

Verrillon VSS200 Series Erbium Doped Fiber

Verrillon Erbium Doped Fiber (EDF) from AFL is a high NA single-mode, highly doped with erbium and optimized for 980 nm pumping in erbium-doped fiber amplifiers (EDFA). The high erbium content in this fiber allows for high efficiency and short device length, while the high NA allows for tight bend radii in compact EDFA packaging. The VSS200-EDF Series has been widely incorporated in EDFAs in the telecommunications industry over the last two decades.

Features

- High numerical aperture design for low bend loss
- Reduced noise figure
- Excellent for use in EDFAs
- Superior run-to-run consistency
- Widely used in EDFAs by the telecom industry

Applications

- Telecommunications Optical Networks
- Erbium-Doped Fiber Amplifiers (EDFAs)
- Light sources
- Signal amplification in sensing systems

Specifications

PART NO.	EDF-1-125	
Description	Erbium Doped Fiber	
PARAMETER	VALUE	
Material		
Coating	Dual UV Acrylate	
Geometry		
Clad Diameter (µm)	125 ± 1	
Core/Clad Offset (µm)	≤ 0.3	
Coat Diameter (µm)	250 ± 10	
Optical		
Absorption @ 1550 nm (dB/m)	6.0 ± 1.0	
Absorption @ 980 nm (dB/m)	4.2 ± 1.0	
Cutoff Wavelength (nm)	920 ± 40	
MFD ¹ @ 1550 nm (μm)	5.5 ± 0.7	
NA (nominal)	0.23	
Attenuation @ 1200 nm (dB/m)	≤ 7.0	
Proof Test		
Tensile Strength (kpsi)	≥ 200	

¹ Petermann II Definition