



# SPECIALTY FIBRE OPTIC CABLE

Downhole | Subsea | Sensing



# **Table of Contents**

## Downhole

| Traditional Downhole Cable                          |
|-----------------------------------------------------|
|                                                     |
| StrataJac <sup>™</sup> Downhole Cable Encapsulation |
| Low Profile Downhole Cable5                         |
| High Temperature Downhole Cable                     |
| MiniBend <sup>™</sup> Fibre Optic Component7        |
| Verrillon® Harsh Environment Fibres8                |
| Verrillon <sup>®</sup> VHM5000 Series Fibres        |
| Verrillon <sup>®</sup> VHM2000 Series Fibres        |
| Verrillon <sup>®</sup> VHS500 Series Fibres         |
| Verrillon <sup>®</sup> VHS100 Series Fibres         |
| Verrillon <sup>®</sup> VPM400 Series Fibres         |

### Subsea

| Fibre Optic Component for Umbilical Cable  | 22 |
|--------------------------------------------|----|
| Specialty Fibre Optic Plastic Buffer Tubes | 23 |

## **Harsh Environment**

| Tactical Tight Buffered Cable                 | 24 |
|-----------------------------------------------|----|
| BU Series Tactical Breakout Cable             | 26 |
| Braided Armored Tactical Tight Buffered Cable | 27 |
| BU Series Braided Armored Breakout Cable      | 28 |
| Aluminum Interlock Armor                      | 29 |
| Sensing                                       |    |

| Distributed Temperature Sensing LSZH Fibre Optic Cable    | 30 |
|-----------------------------------------------------------|----|
| High Strength Steel Wire (HSSW) Armored Fibre Optic Cable | 31 |
| Armored Stainless Steel Tubes                             | 32 |
| Stainless Steel Fibre Optic Tubes                         | 33 |
| Fibre Rod                                                 | 34 |





# **Traditional Downhole Cable**

Traditional Downhole cable from AFL is designed to perform in the well and withstand elevated temperatures, high pressure and corrosive environments. The cable is customised to the customer's specifications in order to maximize performance at the best possible price. AFL's Traditional Downhole cable is targeted to  $\leq$  150°C offshore and land-based wells where ruggedness is essential.

### Features

- Customized to customer specifications
- Up to 150°C
- Up to 20,000 psi operating pressure
- Loose tube design
- Hydrogen scavenging gel

### **Cable Components**



## **Options and Specifications**

| PARAMETER                           | VALUE                                                       |
|-------------------------------------|-------------------------------------------------------------|
| Inner Stainless Steel Tube Diameter | 0.125"                                                      |
| Outer Tube Diameter                 | 0.250"                                                      |
| Outer Tube Wall Thickness           | 0.028", 0.035", 0.049"                                      |
| Outer Tube Material                 | Stainless Steel 316L, Incoloy™ 825                          |
| Fibre Coating                       | Carbon Polyimide, Silicone/PFA, Pure Silica Core and others |
| Gel Types                           | No gel, standard gel, hydrogen scavenging gel               |
| Diameter                            | 11 mm x 11 mm square, 11 mm round                           |
| Polymer Options                     | Polypropylene, PVDF, Nylon, Santoprene <sup>™</sup>         |
| Operating Temperature               | -40°C to 150°C                                              |
| Operating Pressure Limit            | 0 to 20,000 psi                                             |





# Hybrid Downhole Cable

Hybrid Downhole cable from AFL combines copper conductors and optical fibres within the same cable structure for simultaneous deployment. This construction is intended to withstand elevated temperatures, high pressure and corrosive environments. The cable may be customized to the customer's specifications in order to balance performance capability with cost considerations. This design is targeted toward well applications than have operating temperatures  $\leq 150^{\circ}$ C.

### Features

- Up to 150°C
- Incorporates insulated 18AWG copper conductors
- Loose tube design for optical fibres
- Hydrogen scavenging gel
- Customized to customer specifications

### **Cable Components**



## **Options and Specifications**

| PARAMETER                           | VALUE                                   |
|-------------------------------------|-----------------------------------------|
| Inner Stainless Steel Tube Diameter | 0.095"                                  |
| Copper Conductors                   | 2 x 18 AWG                              |
| Outer Tube Diameter                 | 0.250"                                  |
| Outer Tube Wall Thickness           | 0.035"                                  |
| Outer Tube Material                 | Stainless Steel 316L, Incoloy™ 825      |
| Fibre Types                         | Single-mode, Multimode                  |
| Gel Types                           | Hydrogen scavenging gel                 |
| Encapsulation Options               | None, 11 mm x 11 mm Square, 11 mm Round |
| Polymer Types                       | Polypropylene, PVDF, Nylon, Santoprene™ |
| Operating Temperature               | -40°C to 150°C                          |
| Operating Pressure Limit            | 0 to 20,000 psi                         |







Cables installed in oil and gas wells are exposed to severe mechanical and chemical conditions. Cable damage during run-in and subsequent completion processes such as hydraulic fracturing can lead to premature cable failures. StrataJac<sup>™</sup> is the first cable encapsulation designed exclusively to protect downhole cables by resisting the extreme impact energies and abrasion encountered during run-in, and high pressure, high velocity frac' jobs. Abrasion testing has demonstrated a three-fold increase in the amount of time required to breach StrataJac when compared to other commercially available encapsulations. Furthermore, cable impact strength is significantly enhanced when encapsulated with StrataJac. These combined properties make StrataJac ideal for preserving and extending the life of fibre optic cables, TEC cables, and chemical injection lines used in critical downhole applications.

### Features

- Highly Abrasion and Impact Resistant
- Suitable for use in severe chemical environments containing H<sub>2</sub>S, CO<sub>2</sub>, Methane, Oil, Diesel, Gasoline, Toluene, and other organic solvents
- Wide operating temperature range from -40° C to 150° C
- Easy to strip using commercially available encapsulation strippers.

### **Physical Properties**

| DIAMETER (MM) | WEIGHT (KG/KM) | PROFILE |
|---------------|----------------|---------|
| 11            | 76.7           | Round   |
| 12.7          | 115            | Round   |







### Features

- Small diameter
- Low weight
- Redundant hermetic seal
- Encapsulation options
- Lower cost
- Patent pending

# Low Profile Downhole Cable

AFL's unique offering for shallow, land-based wells provides the best combination of ruggedness and size for the price. AFL will customize the design to meet the customer's needs in order to maximise their return on investment.

### **Cable Components**



## **Options and Specifications**

|                     | VALUE                                                       |             |
|---------------------|-------------------------------------------------------------|-------------|
| PARAMETER           | DOUBLE TUBE                                                 | TRIPLE TUBE |
| Outer Tube Diameter | 0.125                                                       | 0.125       |
| Tube Wall Thickness | 0.016                                                       | 0.024       |
| Tube Material       | Stainless Steel 316L, Incoloy™ 825                          |             |
| Fibre coating       | Carbon Polyimide, Silicone/PFA, Pure Silica Core and others |             |
| Gel types           | No gel, high temperature gel, hydrogen scavenging gel       |             |
| Polymer options     | Polypropylene, PVDF, Nylon, Santoprene™                     |             |

#### STAINLESS STEEL 316L OPTION

| Weight                | 21 lbs / 1,000 ft | 28 lbs / 1,000 ft |
|-----------------------|-------------------|-------------------|
| Tensile               | 760 lbs           | 1,060 lbs         |
| Collapse pressure     | 30,000 psi        | 44,000 psi        |
| Bend radius (dynamic) | 12.6"             | 12.6"             |

#### INCOLOY<sup>™</sup> 825 OPTION

| Weight                | 22 lbs / 1,000 ft | 28 lbs / 1,000 ft |
|-----------------------|-------------------|-------------------|
| Tensile               | 814 lbs           | 1,134 lbs         |
| Collapse pressure     | 21,000 psi        | 32,000 psi        |
| Bend radius (dynamic) | 12.6"             | 12.6"             |

### ENCAPSULATION OPTION

| Diameter      | 1/4"              |
|---------------|-------------------|
| Weight        |                   |
| Santoprene™   | 15 lbs / 1,000 ft |
| Polypropylene | 14 lbs / 1,000 ft |
| PVDF          | 28 lbs / 1,000 ft |
| Nylon         | 16 lbs / 1,000 ft |





# **High Temperature Downhole Cable**

AFL's unique solution for applications > 150°C is a three-layer design with the secondary layer being 0.040" thick aluminum. Research indicates hydrogen permeability through aluminum is 100 times less than stainless steel resulting in an extended life for the optical fibre. The all metal design eliminates concerns with polymers at elevated temperatures and provides for stable, predictable performance.

### Features

- Hydrogen resistant
- All metal construction
- Tight tolerances
- 300°C temperatures and beyond
- Loose tube design
- Patent pending

### **Cable Components**



### **Options and Specifications**

| PARAMETER                           |                                      | VALUE                                                                |
|-------------------------------------|--------------------------------------|----------------------------------------------------------------------|
| Inner Stainless Steel Tube Diameter |                                      | 0.094"                                                               |
| Outer Tube Diamete                  | er                                   | 0.250"                                                               |
| Outer Tube Wall Thi                 | ckness                               | 0.028"                                                               |
| Outer Tube Materia                  |                                      | Stainless Steel 316L, Incoloy™ 825                                   |
| Weight                              | Stainless Steel 316L<br>Incoloy™ 825 | 142 kg/km<br>144 kg/km                                               |
| Fibre Types                         |                                      | Single-mode, Multimode, Pure Silica Core Single-mode                 |
| Fibre Coating                       |                                      | Polyimide, Carbon Polyimide, Silicone/PFA, Gold,<br>Aluminum, Copper |
| Gel Types                           |                                      | No gel, high temperature gel, hydrogen scavenging gel                |
| Polymer Options                     |                                      | Polypropylene, PVDF, Nylon, Santoprene <sup>™</sup>                  |
| Operating Temperature               |                                      | -40°C to 300°C, higher upon request                                  |
| Operating Pressure Limit            |                                      | 0 to 20,000 psi                                                      |





## MiniBend<sup>™</sup> Fibre Optic Component For Downhole Double-ended Systems and Optical Connectivity

The MiniBend miniature fibre optic component employs a revolutionary technology that will change the way you plan and engineer the fibre management in your oil or gas well. This patented technology allows for a single strand of multimode or single-mode fibre to be formed at a 180° bend with a 1 mm fibre bend diameter, saving valuable real estate.

#### Features

- Elegant, low profile solution for achieving downhole fibre optic double-ended system
- Provides low-loss sub-millimeter bends for miniaturizing fibre components and circuits
- No stress with the small bend radii
- Bi-directional
- Mechanically and environmentally robust
- Small and protective package

### Dimensions

## Applications

- Downhole fibre optic turnaround
- Fibre management systems
- Modulators, splitters, circulators, connectors and polarisers
- Circuit boards and back planes
- Compact test instrumentation and sensors



### **Specifications**

| PARAMETER                  | VALUE                                                                         |                                     |                                                       |                                 |
|----------------------------|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------|---------------------------------|
| Item Number                | DNS-1574                                                                      | DNS-1575                            | DNS-1885                                              | DNS-1890                        |
| Fibre Coating Type         | 50 µm multimode carbon mid-temperature acrylate                               | 50 μm multimode<br>carbon/polyimide | single-mode carbon<br>mid-temperature acrylate        | single-mode<br>carbon/polyimide |
| Operation Wavelength Range | 900 to 1340 nm, 1430 to 1600 nm                                               |                                     | 1280 to 1340 nm, 1430 to 1600 nm                      |                                 |
| Insertion Loss             | < 0.2 dB at 1310 nm of wavelength at room temperature                         |                                     | < 0.3 dB at 1550 nm of wavelength at room temperature |                                 |
| Operating Temperature      | 0 to 150°C 0 to 200°C                                                         |                                     | 0 to 150°C                                            | 0 to 200°C                      |
| Storage Temperature        | -60 to 85°C                                                                   |                                     |                                                       |                                 |
| Body Size                  | Outside Diameter = $2.2 \text{ mm }$ +/-0.1, Length = $15 \text{ mm }$ +/-0.3 |                                     |                                                       |                                 |
| Fibre Tail Length          | > 0.5 m                                                                       |                                     |                                                       |                                 |
| Straight Pull              | 500 g                                                                         |                                     |                                                       |                                 |





# **Verrillon**<sub>®</sub> Harsh Environment Fibres

Verrillon Harsh Environment Fibres from AFL are available in a number of designs. Starting with fibre design, we offer both single-mode and multimode optical fibres having coatings and coating combinations, including Polyimide, Silicone-PFA, Silicone-MTA, MTA and Carbon, which can be applied in conjunction with any of these outer coatings. Typically, these fibres are used in downhole data logging, distributed sensing and imaging applications.

Verrillon coated fibres provide exceptionally high levels of hermeticity compared to commercial fibres. We provide extensive data that demonstrates the performance of our fibre. In addition, we provide one-stop shopping for customers requiring multi-count cabled hermetic fibres, if required, in metal jacketing tubes.

Consistent with our founding principles, we specialize in application optimised fibres, providing our customers unmatched flexibility in the their system design and performance.

### Features

- Wide range of protective coatings available, depending on application requirements
- Suitable for use in high pressure, high temperature and corrosive environments
- Carbon fibre provides exceptional resistance to H2 and moisture ingression
- Predicted lifetime for hermetic fibre under typical operating conditions that exceed most requirements
- Extensive test and measurement data for optical fibre performance under "harsh conditions" provided with fibre



### H<sub>2</sub> Ingression Test of Verrillon MM Carbon/Polyimide Fibre



# Verrillon Harsh Environment Fibres

Verrillon offers the broadest range of specialty fibres for oil and gas sensors of all types:

- Distributed Temperature Sensors **DTS**
- Distributed Pressure Sensors DPS
- Distributed Strain Sensors **DSS**
- Distributed Acoustic Sensors **DAS**
- Ocean Bottom Seismic OBS

### **Verrillon Optical Fibre Selection Matrix**

| MAXIMUM TEMPERATURE | CONDITIONS       | SINGLE-MODE  | MULTIMODE     |
|---------------------|------------------|--------------|---------------|
| 85°C                | Hydrogen Present | VHS100-CA    | VHM2000-CA    |
| 150°C               | No Hydrogen      | VHS100-MTDA  | VHM2000-MTDA  |
|                     |                  | VHS100-SMTA  | VHM2000-SMTA  |
|                     | Hydrogen Present | VHS100-CMTDA | VHM2000-CMTDA |
|                     |                  | VHS100-CSMTA | VHM2000-CSMTA |
| 200°C               | All Conditions   | VHS500-CSPFA | VHM3000-CSPFA |
|                     |                  | VHS500-P     | VHM3000-P     |
|                     |                  | VHS500-CP    | VHM3000-CP    |
| 300°C               | All Conditions   | VHS500-P     | VHM3000-P     |
|                     |                  | VHS500-CP    | VHM5000-P     |
|                     |                  |              | VHM3000-CP    |
|                     |                  |              | VHM5000-CP    |





# Verrillon VHM5000 Series Fibres

Verrillon Harsh Environment Fibres from AFL are available in a number of designs. The VHM5000 Series is a multimode graded-index optical fibre available with coatings and coating combinations, including Polyimide, high temperature acrylates, Silicone-PFA and hermetic Carbon. Typically, these fibres are used in down-hole data logging, distributed sensing and imaging applications where the temperature and hydrogen partial pressures are extreme.

Verrillon carbon-coated optical fibres provide exceptionally high levels of hermeticity compared to commercial fibres. We provide extensive data that demonstrates the performance of our fibre. In addition, we provide one-stop shopping for customers requiring multi-count cabled hermetic fibres, if required, in metal jacketing tubes.

Consistent with our founding principles, we specialise in application optimized fibres, providing our customers unmatched flexibility in the their system design and performance.

### Features

- Best glass resistance to hydrogen at high temperatures and pressures in the entire industry
- Wide range of protective coatings available, depending on application requirements
- Suitable for use in high pressure, high temperature and corrosive environments
- Carbon coating provides exceptional resistance to H<sub>2</sub> and moisture ingression
- Predicted lifetime for hermetic fibre under typical operating conditions exceeds most requirements
- Extensive test and measurement data for optical fibre performance under "harsh conditions" provided with fibre

### **Specifications**

| PART NO.                                                          | MMF-50-4-P-125-4                                              |
|-------------------------------------------------------------------|---------------------------------------------------------------|
| Description                                                       | 50/125/155 µm Polyimide coated, Graded Index, Multimode Fibre |
| PARAMETER                                                         | VALUE                                                         |
| Material                                                          |                                                               |
| Coating                                                           | Polyimide                                                     |
| Geometry                                                          |                                                               |
| Core Diameter (µm)                                                | 50 ± 2.5                                                      |
| Clad Diameter (µm)                                                | 125 ± 2                                                       |
| Core Non-Circularity (%)                                          | ≤5                                                            |
| Clad Non-Circularity (%)                                          | ≤1                                                            |
| Core/Clad Offset (µm)                                             | ≤1.5                                                          |
| Coating Diameter (µm)                                             | 155 ± 5                                                       |
| Polyimide Coating Concentricity <sup>1</sup>                      | ≥80                                                           |
| Optical                                                           |                                                               |
| NA (nominal)                                                      | 0.20                                                          |
| Attenuation <sup>2</sup><br>@ 850 nm (dB/km)<br>@ 1300 nm (dB/km) | ≤ 3.0<br>≤ 1.2                                                |
| Bandwidth<br>@ 850 nm (MHz-km)<br>@ 1300 nm (MHz-km)              | ≥ 300<br>≥ 300                                                |
| Mechanical                                                        |                                                               |
| Proof Test (kpsi)                                                 | ≥ 100                                                         |
| Operating Temperature (°C)                                        | -65 to +300                                                   |
| 1 Massured as (Min Wall/May Wall) y 100 2 Massured                |                                                               |

<sup>1</sup> Measured as (Min. Wall/Max. Wall) x 100

<sup>2</sup> Measured on loose coil



# Verrillon。 VHM5000 Series Fibres

### Specifications

| PART NO.                                     | MMF-50-4-CP-125-2                     | MMF-50-4-CP-125-3              | MMF-50-4-CP-125-4                    |
|----------------------------------------------|---------------------------------------|--------------------------------|--------------------------------------|
| Description                                  | 50/125/155 µm Carbon/Polyimide        | 50/125/155 µm Carbon/Polyimide | 50/125/155 µm Carbon/Polyimide       |
|                                              | coated, Graded Index Multimode Fibre, | Graded Index, Multimode Fibre, | coated, Graded Index Multimode Fibre |
|                                              | 200 kpsi                              | 150 kpsi                       |                                      |
| PARAMETER                                    | VALUE                                 |                                |                                      |
| Material                                     |                                       |                                |                                      |
| Hermetic                                     | Carbon                                | Carbon                         | Carbon                               |
| Coating                                      | Polyimide                             | Polyimide                      | Polyimide                            |
| Geometry                                     |                                       |                                |                                      |
| Core Diameter (µm)                           | 50 ± 2.5                              | 50 ± 2.5                       | 50 ± 2.5                             |
| Clad Diameter (µm)                           | 125 ± 2                               | 125 ± 2                        | 125 ± 2                              |
| Core Non-Circularity (%)                     | ≤ 5                                   | ≤ 5                            | ≤ 5                                  |
| Clad Non-Circularity (%)                     | $\leq 1$                              | ≤ 1                            | ≤ 1                                  |
| Core/Clad Offset (µm)                        | ≤ 1.5                                 | ≤ 1.5                          | ≤ 1.5                                |
| Coating Diameter (µm)                        | 155 ± 5                               | 155 ± 5                        | 155 ± 5                              |
| Polyimide Coating Concentricity <sup>1</sup> | ≥80                                   | ≥80                            | ≥80                                  |
| Optical                                      |                                       |                                |                                      |
| NA (nominal)                                 | 0.20                                  | 0.20                           | 0.20                                 |
| Attenuation <sup>2</sup>                     |                                       |                                |                                      |
| @ 850 nm (dB/km)                             | $\leq 3.0$                            | ≤ 3.0                          | ≤ 3.0                                |
| @ 1300 nm (dB/km)                            | <u>≤ 1.2</u>                          | ≤ I.Z                          | <u>≤ 1.2</u>                         |
| Bandwidth<br>@ 850 nm (MHz-km)               | > 300                                 | > 300                          | > 300                                |
| @ 1300 nm (MHz-km)                           | ≥ 300                                 | ≥ 300                          | ≥ 300                                |
| Mechanical                                   |                                       |                                |                                      |
| Proof Test (kpsi)                            | ≥ 200                                 | ≥ 150                          | ≥ 100                                |
| Operating Temperature (°C)                   | -65 to +300                           | -65 to +300                    | -65 to +300                          |

<sup>1</sup> Measured as (Min. Wall/Max. Wall) x 100

<sup>2</sup> Measured on loose coil



# Verrillon<sub>®</sub> VHM5000 Series Fibres

### Specifications

| PART NO.                       | MMF-50-4-CSPFA-125-1        | MMF-50-4-CSPFA-125-5        | MMF-50-4-CSPFA-125-6        | MMF-50-4-CSPFA-125-7             |
|--------------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------------|
| Description                    | 50/125/750 µm Carbon/       | 50/125/400 µm Carbon/       | 50/125/250 µm Carbon/       | 50/125/250 µm Carbon/            |
|                                | Silicone/PFA, Graded Index, | Silicone/PFA coated, Graded | Silicone/PFA coated, Graded | Silicone/PFA coated, Graded      |
|                                | Multimode Fibre, 150 kpsi   | Index, Multimode Fibre      | Index, Multimode Fibre      | Index, Multimode Fibre, 150 kpsi |
| PARAMETER                      | VALUE                       |                             |                             |                                  |
| Material                       |                             |                             |                             |                                  |
| Hermetic                       | Carbon                      | Carbon                      | Carbon                      | Carbon                           |
| Primary Coating                | Silicone                    | Silicone                    | Silicone                    | Silicone                         |
| Secondary Coating              | PFA                         | PFA                         | PFA                         | PFA                              |
| Geometry                       |                             |                             |                             |                                  |
| Core Diameter (µm)             | 50 ± 2.5                    | 50 ± 2.5                    | 50 ± 2.5                    | 50 ± 2.5                         |
| Clad Diameter (µm)             | 125 ± 2                     | 125 ± 2                     | 125 ± 2                     | 125 ± 2                          |
| Core Non-Circularity (%)       | ≤ 5                         | ≤ 5                         | ≤ 5                         | ≤ 5                              |
| Clad Non-Circularity (%)       | ≤ 1                         | ≤ 1                         | ≤ 1                         | ≤ 1                              |
| Core/Clad Offset (µm)          | ≤ 1.5                       | ≤ 1.5                       | ≤ 1.5                       | ≤ 1.5                            |
| Combined Coating Diameter (µm) | 750 ± 25                    | 400 ± 50                    | 250 ± 50                    | 250 ± 50                         |
| Optical                        |                             |                             |                             |                                  |
| NA (nominal)                   | 0.20                        | 0.20                        | 0.20                        | 0.20                             |
| Attenuation <sup>1</sup>       |                             |                             |                             |                                  |
| @ 850 nm (dB/km)               | ≤ 3.0                       | ≤ 3.0                       | ≤ 3.0                       | ≤ 3.0                            |
| @ 1300 nm (dB/km)              | ≤ 1.0                       | ≤ 1.2                       | ≤ 1.2                       | ≤ 1.2                            |
| Bandwidth                      |                             |                             |                             |                                  |
| @ 850 nm (MHz-km)              | ≥ 300                       | ≥ 300                       | ≥ 300                       | ≥ 300                            |
| @ 1300 nm (MHz-km)             | ≥ 300                       | ≥ 300                       | ≥ 300                       | ≥ 300                            |
| Mechanical                     |                             |                             |                             |                                  |
| Proof Test (kpsi)              | ≥ 150                       | ≥ 100                       | ≥ 100                       | ≥ 150                            |
| Operating Temperature (°C)     | -40 to +200                 | -40 to +200                 | -40 to +200                 | -40 to +200                      |

<sup>1</sup> Measured on loose coil





# Verrillon。 VHM2000 Series Fibres

Verrillon Harsh Environment Fibres from AFL are available in a number of designs. Starting with fibre design, we offer both single-mode and multimode optical fibres having coatings and coating combinations, including Polyimide, Silicone-PFA, Silicone-MTA, MTA and Carbon, which can be applied in conjunction with any of these outer coatings. Typically, these fibres are used in downhole data logging, distributed sensing and imaging applications.

Verrillon carbon-coated optical fibres provide exceptionally high levels of hermeticity compared to commercial fibres. We provide extensive data that demonstrates the performance of our fibre. In addition, we provide one-stop shopping for customers requiring multi-count cabled hermetic fibres, if required, in metal jacketing tubes.

Consistent with our founding principles, we specialize in application optimised fibres, providing our customers unmatched flexibility in the their system design and performance.

### Features

- 50/125 μm graded index multimode fibre, enhanced resistance level to H<sub>2</sub> ingression
- Suitable for use in low/mid-temperature, no/low hydrogen environments
- Carbon coating provides exceptional resistance to H<sub>2</sub> and moisture ingression
- Wide range of protective coatings available

| Specification | ۱S |
|---------------|----|
|---------------|----|

| PART NO.                                     | MMF-50-3-CP-125-3                             | MMF-50-3-P-125-3                              |
|----------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| Description                                  | 50/125/155 μm Carbon/Polyimide coated, Graded | 50/125/155 µm Polyimide coated, Graded Index, |
|                                              | Index, Multimode Fibre                        | Multimode Fibre                               |
| PARAMETER                                    | VALUE                                         |                                               |
| Material                                     |                                               |                                               |
| Hermetic Coating                             | Carbon                                        | <u> </u>                                      |
| Coating                                      | Polyimide                                     | Polyimide                                     |
| Geometry                                     |                                               |                                               |
| Core Diameter (µm)                           | 50 ± 2.5                                      | 50 ± 2.5                                      |
| Clad Diameter (µm)                           | 125 ± 2                                       | 125 ± 2                                       |
| Core Non-Circularity (%)                     | ≤ 5                                           | ≤ 5                                           |
| Clad Non-Circularity (%)                     | ≤ 1                                           | ≤ 1                                           |
| Core/Clad Offset (µm)                        | ≤ 1.5                                         | ≤ 1.5                                         |
| Coating Diameter (µm)                        | 155 ± 5                                       | 155 ± 5                                       |
| Polyimide Coating Concentricity <sup>1</sup> | ≥80                                           | ≥80                                           |
| Optical                                      |                                               |                                               |
| NA (nominal)                                 | 0.20                                          | 0.20                                          |
| Attenuation <sup>2</sup>                     |                                               |                                               |
| @ 850 nm (dB/km)<br>@ 1200 nm (dB/km)        | $\leq 3.0$                                    | $\leq 3.0$                                    |
| Bandwidth                                    | ≤ 1.Z                                         | <u>≤ 1.2</u>                                  |
| @ 850 nm (MHz-km)                            | > 300                                         | > 300                                         |
| @ 1300 nm (MHz-km)                           | ≥ 300                                         | ≥ 300                                         |
| Mechanical                                   |                                               |                                               |
| Proof Test (kpsi)                            | ≥ 100                                         | ≥ 100                                         |
| Operating Temperature (°C)                   | -65 to +300                                   | -65 to +300                                   |
|                                              |                                               |                                               |

<sup>1</sup> Measured as (Min. Wall/Max. Wall) x 100

<sup>2</sup> Measured on loose coil



# Verrillon. VHM2000 Series Fibres

## Specifications

| PART NO.                       | MMF-50-3-MTDA-125-3            | MMF-50-3-CSMTA-125-3          | MMF-50-3-CMTDA-125-3           | MMF-50-3-CMTDA-125-4             |
|--------------------------------|--------------------------------|-------------------------------|--------------------------------|----------------------------------|
| Description                    | 50/125/245 µm Mid-Temp Dual    | 50/125/245 µm Carbon/         | 50/125/245 µm Carbon/          | 50/125/245 µm Carbon/            |
|                                | Acrylate coated, Graded Index, | Si/Mid-Temp Dual Acrylate,    | Mid-Temp Dual Acrylate coated, | Mid-Temp Dual Acrylate, Graded   |
|                                | Multimode Fibre                | Graded Index, Multimode Fibre | Graded Index, Multimode Fibre  | Index, Multimode Fibre, 200 kpsi |
| PARAMETER                      | VALUE                          |                               |                                |                                  |
| Material                       |                                |                               |                                |                                  |
| Hermetic Coating               |                                | Carbon                        | Carbon                         | Carbon                           |
| Primary Coating                | Mid-Temp Dual Acrylate         | Silicone                      | Mid-Temp Dual Acrylate         | Mid-Temp Dual Acrylate           |
| Secondary Coating              | Mid-Temp Dual Acrylate         | Mid-Temp Dual Acrylate        | Mid-Temp Dual Acrylate         | Mid-Temp Dual Acrylate           |
| Geometry                       |                                |                               |                                |                                  |
| Core Diameter (µm)             | 50 ± 2.5                       | 50 ± 2.5                      | 50 ± 2.5                       | 50 ± 2.5                         |
| Clad Diameter (µm)             | 125 ± 2                        | 125 ± 2                       | 125 ± 2                        | 125 ± 2                          |
| Core Non-Circularity (%)       | ≤ 5                            | ≤ 5                           | ≤ 5                            | ≤ 5                              |
| Clad Non-Circularity (%)       | ≤ 1                            | ≤ 1                           | ≤ 1                            | ≤ 1                              |
| Core/Clad Offset (µm)          | ≤ 1.5                          | ≤ 1.5                         | ≤ 1.5                          | ≤ 1.5                            |
| Combined Coating Diameter (µm) | 245 ± 5                        | 245 ± 20                      | 245 ± 5                        | 245 ± 5                          |
| Optical                        |                                |                               |                                |                                  |
| NA (nominal)                   | 0.20                           | 0.20                          | 0.20                           | 0.20                             |
| Attenuation                    |                                |                               |                                |                                  |
| @ 850 nm (dB/km)               | ≤ 2.5                          | ≤ <b>3</b> .0                 | ≤ 2.5                          | ≤ 2.5                            |
| @ 1300 nm (dB/km)              | ≤ 0.7                          | ≤ 1.2                         | ≤ 0.7                          | ≤ 0.7                            |
| Bandwidth                      |                                |                               |                                |                                  |
| @ 850 nm (MHz-km)              | > 300                          | > 300                         | > 300                          | > 300                            |
| @ 1300 nm (MHz-km)             | ≥ 300                          | ≥ 300                         | ≥ 300                          | ≥ 300                            |
| Mechanical                     |                                |                               |                                |                                  |
| Proof Test (kpsi)              | <u>≥</u> 100                   | <u>≥</u> 100                  | <u>≥</u> 100                   | ≥ 200                            |
| Operating Temperature (°C)     | -40 to +150                    | -40 to +150                   | -40 to +150                    | -40 to +150                      |



# Verrillon。 VHM2000 Series Fibres

### Specifications

| PART NO.                       | MMF-50-3-SPFA-125-1                | MMF-50-3-SPFA-125-6                | MMF-50-3-CSPFA-125-5                 |
|--------------------------------|------------------------------------|------------------------------------|--------------------------------------|
| Description                    | 50/125/700 µm Silicone/PFA coated, | 50/125/250 μm Silicone/PFA coated, | 50/125/400 µm Carbon/Silicone/PFA    |
|                                | Graded Index, Multimode Fibre      | Graded Index, Multimode Fibre      | coated, Graded Index Multimode Fibre |
| PARAMETER                      | VALUE                              |                                    |                                      |
| Material                       |                                    |                                    |                                      |
| Hermetic Coating               | —                                  | —                                  | Carbon                               |
| Primary Coating                | Silicone                           | Silicone                           | Silicone                             |
| Secondary Coating              | PFA                                | PFA                                | PFA                                  |
| Geometry                       |                                    |                                    |                                      |
| Core Diameter (µm)             | 50 ± 2.5                           | 50 ± 3                             | 50 ± 2.5                             |
| Clad Diameter (µm)             | 125 ± 2                            | 125 ± 2                            | 125 ± 2                              |
| Core Non-Circularity (%)       | ≤ 5                                | ≤ 5                                | ≤ 5                                  |
| Clad Non-Circularity (%)       | ≤ 1                                | ≤ 1                                | ≤ 1                                  |
| Core/Clad Offset (µm)          | ≤ 1.5                              | ≤ 1.5                              | ≤ 1.5                                |
| Combined Coating Diameter (µm) | 700 ± 50                           | 250 ± 50                           | 400 ± 50                             |
| Optical                        |                                    |                                    |                                      |
| NA (nominal)                   | 0.20                               | 0.20                               | 0.20                                 |
| Attenuation <sup>1</sup>       |                                    |                                    |                                      |
| @ 850 nm (dB/km)               | ≤ 3.0                              | ≤ 3.0                              | ≤ 3.0                                |
| @ 1300 nm (dB/km)              | ≤ 1.2                              | ≤ 0.8                              | ≤ 1.2                                |
| Bandwidth                      |                                    |                                    |                                      |
| @ 850 nm (MHz-km)              | ≥ 300                              | ≥ 300                              | ≥ 300                                |
| @ 1300 nm (MHz-km)             | <u>≥</u> 300                       | <u>≥</u> 300                       | <u>≥</u> 300                         |
| Mechanical                     |                                    |                                    |                                      |
| Proof Test (kpsi)              | <u>≥</u> 100                       | <u>≥</u> 100                       | <u>≥</u> 100                         |
| Operating Temperature (°C)     | -40 to +200                        | -40 to +200                        | -40 to +200                          |

<sup>1</sup> Measured on loose coil





# **Verrillon**<sub>®</sub> VHS500 Series Fibres

Verrillon Harsh Environment Fibres from AFL are available in a number of designs. VHS500 is a pure silica core single-mode design available with all Verrillon harsh environment coating combinations, including Polyimide, Silicone-PFA, Silicone-MTA, MTA and Carbon, which can be applied in conjunction with any of these polymeric coatings. Typically, these fibres are used in downhole distributed sensing techniques for temperature, pressure, acoustics and seismic, as well as in data logging and imaging applications.

Our carbon-coated optical fibres provide exceptionally high levels of hermeticity compared to commercial fibres. We provide extensive data that demonstrates the performance of our fibre in simulated well conditions. In addition, we provide one-stop shopping for customers requiring single or multi-count cabled hermetic fibres in metal jacketing tubes and polymeric configurations.

Consistent with our founding principles, we specialize in application-optimised fibres, providing our customers unmatched flexibility in their system design and performance.

### Features

- Optimised for 1550 nm Single Wavelength Operation
- Pure Silica Core chemistry for improved performance in hydrogen-rich environments
- Greater than 50x bend loss improvement at 1550 nm over standard SMF
- MFD compatible with standard SMF for ease of splicing and minimal splice loss
- Available with all Verrillon harsh environment coatings

| PART NO.                                         | SMF-60-CP-125-1                                                                                             | SMF-60-P-125-1                                                                                       |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Description                                      | 125/155 μm Carbon/Polyimide coated<br>Single-mode fibre, 0.12 NA, 100 kpsi, 1550 nm<br>Operating Wavelength | 125/155 μm Polyimide coated Single-mode<br>fibre, 0.12 NA, 100 kpsi, 1550 nm Operating<br>Wavelength |
| PARAMETER                                        | VALUE                                                                                                       |                                                                                                      |
| Material                                         |                                                                                                             |                                                                                                      |
| Hermetic Coating                                 | Carbon                                                                                                      | —                                                                                                    |
| Coating                                          | Polyimide                                                                                                   | Polyimide                                                                                            |
| Geometry                                         |                                                                                                             |                                                                                                      |
| Clad Diameter (µm)                               | 125 ± 2                                                                                                     | 125 ± 2                                                                                              |
| Clad Non-Circularity (%)                         | <u>&lt;</u> 3                                                                                               | <u>≤</u> 3                                                                                           |
| Core/Clad Offset (µm)                            | <u>≤</u> 1.5                                                                                                | ≤ 1.5                                                                                                |
| Coating Diameter (µm)                            | 155 ± 5                                                                                                     | 155 ± 5                                                                                              |
| Polyimide Coating Concentricity <sup>1</sup> (%) | ≥ 80                                                                                                        | ≥ 80                                                                                                 |
| Optical                                          |                                                                                                             |                                                                                                      |
| NA (nominal)                                     | 0.12                                                                                                        | 0.12                                                                                                 |
| Attenuation <sup>2</sup><br>@ 1550 nm (dB/km)    | ≤ 0.8                                                                                                       | ≤ 0.8                                                                                                |
| Cutoff Wavelength (nm)                           | ≤ 1530                                                                                                      | ≤ 1530                                                                                               |
| Mode Field Diameter <sup>3</sup>                 |                                                                                                             |                                                                                                      |
| @ 1550 nm (dB/km)                                | 10.0 ± 0.7                                                                                                  | 10.0 ± 0.7                                                                                           |
| Mechanical                                       |                                                                                                             |                                                                                                      |
| Proof Test (kpsi)                                | ≥ 100                                                                                                       | ≥ 100                                                                                                |
| Operating Temperature (°C)                       | -65 to +300                                                                                                 | -65 to +300                                                                                          |
|                                                  |                                                                                                             |                                                                                                      |

1 (Min. Wall/Max. Wall) x 100

**Applications** 

**Specifications** 

Downhole in oil and gas

bending requirements

• Cabling processes with tight

Harsh environment applicationsTight bend fibre installations

<sup>2</sup> Measured on loose coil

<sup>3</sup> Petermann II Definition



# Verrillon VHS500 Series Fibres

### Specifications

| PART NO.                         | SMF-60-CSPFA-125-3                                                                                          | SMF-60-CSPFA-125-7                                                                                          |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Description                      | 125/700 μm Carbon/Silicone/PFA coated Single-mode fibre,<br>0.12 NA, 100 kpsi, 1550 nm Operating Wavelength | 125/250 μm Carbon/Silicone/PFA coated Single-mode fibre,<br>0.12 NA, 150 kpsi, 1550 nm Operating Wavelength |
| PARAMETER                        | VALUE                                                                                                       |                                                                                                             |
| Material                         |                                                                                                             |                                                                                                             |
| Hermetic Coating                 | Carbon                                                                                                      | Carbon                                                                                                      |
| Primary Coating                  | Silicone                                                                                                    | Silicone                                                                                                    |
| Secondary Coating                | PFA                                                                                                         | PFA                                                                                                         |
| Geometry                         |                                                                                                             |                                                                                                             |
| Clad Diameter (µm)               | 125 ± 2                                                                                                     | 125 ± 2                                                                                                     |
| Core/Clad Offset (µm)            | ≤ 1.5                                                                                                       | ≤ 1.5                                                                                                       |
| Combined Coating Diameter (µm)   | 700 ± 50                                                                                                    | 250 ± 50                                                                                                    |
| Optical                          |                                                                                                             |                                                                                                             |
| NA (nominal)                     | 0.12                                                                                                        | 0.12                                                                                                        |
| Attenuation<br>@ 1550 nm (dB/km) | ≤ 0.8                                                                                                       | ≤0.8                                                                                                        |
| Cutoff Wavelength (nm)           | ≤ 1530                                                                                                      | ≤ 1530                                                                                                      |
| Mode Field Diameter <sup>1</sup> |                                                                                                             |                                                                                                             |
| @ 1550 nm (dB/km)                | $10.0 \pm 0.7$                                                                                              | $10.0 \pm 0.7$                                                                                              |
| Mechanical                       |                                                                                                             |                                                                                                             |
| Proof Test (kpsi)                | ≥ 100                                                                                                       | ≥ 150                                                                                                       |
| Operating Temperature (°C)       | -40 to +200                                                                                                 | -40 to +200                                                                                                 |

<sup>1</sup> Petermann II Definition

### **Specifications**

| PART NO.                         | SMF-60-CMTDA-125-1                                                                                                                |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Description                      | 125/245 μm Carbon Mid-Temp Dual Acrylate, Pure Silica Core, Single-mode fibre, 0.12 NA, 100 kpsi,<br>1550 nm Operating Wavelength |
| PARAMETER                        | VALUE                                                                                                                             |
| Material                         |                                                                                                                                   |
| Hermetic Coating                 | Carbon                                                                                                                            |
| Coating                          | Mid-Temp Dual Acrylate                                                                                                            |
| Geometry                         |                                                                                                                                   |
| Clad Diameter (µm)               | 125 ± 2                                                                                                                           |
| Core/Clad Offset (µm)            | ≤1.5                                                                                                                              |
| Coating Diameter (µm)            | 245 ± 15                                                                                                                          |
| Optical                          |                                                                                                                                   |
| NA (nominal)                     | 0.12                                                                                                                              |
| Attenuation @ 1550 nm (dB/km)    | ≤0.8                                                                                                                              |
| Cutoff Wavelength (nm)           | ≤ 1530                                                                                                                            |
| Mode Field Diameter <sup>1</sup> |                                                                                                                                   |
| @ 1550 nm (dB/km)                | 10.0 ± 0.7                                                                                                                        |
| Mechanical                       |                                                                                                                                   |
| Proof Test (kpsi)                | ≥100                                                                                                                              |
| Operating Temperature (°C)       | -40 to +150                                                                                                                       |

<sup>1</sup> Petermann II Definition





# Verrillon。 VHS100 Series Fibres

Verrillon Harsh Environment Fibres from AFL are available in a number of designs. Starting with fibre design, we offer both single-mode and multimode optical fibres having coatings and coating combinations, including Polyimide, Silicone-PFA and Carbon, which can be applied in conjunction with any of these outer coatings. Typically, these fibres are used in down-hole data logging, distributed sensing and imaging applications.

Verrillon carbon-coated optical fibres provide exceptionally high levels of hermeticity compared to commercial fibres. We provide extensive data that demonstrates the performance of our fibre. In addition, we provide one-stop shopping for customers requiring multi-count cabled hermetic fibres, if required, in metal jacketing tubes.

Consistent with our founding principles, we specialize in application optimised fibres, providing our customers unmatched flexibility in the their system design and performance.

### Features

- Equivalent to 'standard' telecom SMF
- Optimized for 1310/1550 nm Dual Wavelength Operation
- Carbon coating provides exceptional resistance to H, and moisture ingression
- Wide range of protective coatings available

## Specifications

| PART NO.                                         | SMF-1-P-125-2                     | SMF-1-P-125-3                     | SMF-1-CP-125-3                      |  |
|--------------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|--|
| Description                                      | 125/155 µm Polyimide, Single-mode | 125/155 µm Polyimide, Single-mode | 125/155 µm Carbon/Polyimide,        |  |
|                                                  | fibre, 0.12NA, 150 kpsi           | fibre, 0.12NA, 100 kpsi           | Single-mode fibre, 0.12NA, 100 kpsi |  |
| PARAMETER                                        | VALUE                             |                                   |                                     |  |
| Material                                         |                                   |                                   |                                     |  |
| Hermetic Coating                                 | <u> </u>                          | <u> </u>                          | Carbon                              |  |
| Coating                                          | Polyimide                         | Polyimide                         | Polyimide                           |  |
| Geometry                                         |                                   |                                   |                                     |  |
| Clad Diameter (µm)                               | 125 ± 2                           | 125 ± 2                           | 125 ± 2                             |  |
| Core/Clad Offset (µm)                            | ≤ 0.5                             | ≤ 0.5                             | ≤ 0.5                               |  |
| Coating Diameter (µm)                            | 155 ± 5                           | 155 ± 5                           | 155 ± 5                             |  |
| Polyimide Coating Concentricity <sup>1</sup> (%) | ≥ 80                              | ≥ 80                              | ≥ 80                                |  |
| Optical                                          |                                   |                                   |                                     |  |
| NA (nominal)                                     | 0.12                              | 0.12                              | 0.12                                |  |
| Attenuation <sup>2</sup>                         |                                   |                                   |                                     |  |
| @ 1310 nm (dB/km)                                | ≤ 0.7                             | ≤ 0.7                             | ≤ 0.7                               |  |
| @ 1550 nm (dB/km)                                | ≤ 0.6                             | ≤ 0.6                             | ≤ 0.6                               |  |
| Cutoff Wavelength (nm)                           | 1250 ± 50                         | 1250 ± 50                         | 1250 ±50                            |  |
| Mode Field Diameter <sup>3</sup>                 |                                   |                                   |                                     |  |
| @ 1310 nm (μm)                                   | 9.2 ± 0.6                         | 9.2 ± 0.6                         | 9.2 ± 0.6                           |  |
| @ 1550 nm (μm)                                   | 10.4 ± 0.8                        | 10.4 ± 0.8                        | 10.4 ± 0.8                          |  |
| Mechanical                                       |                                   |                                   |                                     |  |
| Proof Test (kpsi)                                | ≥ 150                             | ≥ 100                             | ≥ 100                               |  |
| Operating Temperature (°C)                       | -65 to +300                       | -65 to +300                       | -65 to +300                         |  |

<sup>1</sup> Measured as (Min. Wall/Max. Wall) x 100

<sup>2</sup> Measured on Zero Tension spool

<sup>3</sup> Petermann II Definition



# Verrillon VHS100 Series Fibres

### Specifications

| 25/245 μm Carbon/ Mid-Temp Dual Acrylate coated, Single-mode fibre 0.12NA, 100 kpsi |
|-------------------------------------------------------------------------------------|
|                                                                                     |
| ALOL                                                                                |
|                                                                                     |
| arbon                                                                               |
| /id-Temp Dual Acrylate                                                              |
|                                                                                     |
| 25 ± 2                                                                              |
| 0.5                                                                                 |
| 45 ± 15                                                                             |
|                                                                                     |
| .12                                                                                 |
|                                                                                     |
| 0.5                                                                                 |
| 0.3                                                                                 |
| 1250 ±50                                                                            |
|                                                                                     |
| .2 ± 0.6                                                                            |
| 0.4 ± 0.8                                                                           |
|                                                                                     |
| 100                                                                                 |
| 40 to +150                                                                          |
|                                                                                     |

<sup>1</sup> Measured on loose coil <sup>2</sup> Petermann II Definition

### Specifications

| PART NO.                         | SMF-1-MTDA-125-1                                                              |  |
|----------------------------------|-------------------------------------------------------------------------------|--|
| Description                      | 125/245 µm Mid-Temp Dual Acrylate coated, Single-mode fibre, 0.12NA, 100 kpsi |  |
| PARAMETER                        | VALUE                                                                         |  |
| Material                         |                                                                               |  |
| Coating                          | Mid-Temp Dual Acrylate                                                        |  |
| Geometry                         |                                                                               |  |
| Clad Diameter (µm)               | 125 ± 2                                                                       |  |
| Core/Clad Offset (µm)            | ≤ 0.5                                                                         |  |
| Coating Diameter (µm)            | 245 ± 5                                                                       |  |
| Optical                          |                                                                               |  |
| NA (nominal)                     | 0.12                                                                          |  |
| Attenuation                      |                                                                               |  |
| @ 1310 nm (dB/km)                | ≤ 0.40                                                                        |  |
| @ 1550 nm (dB/km)                | ≤ 0.25                                                                        |  |
| Cutoff Wavelength (nm)           | 1250 ± 50                                                                     |  |
| Mode Field Diameter <sup>1</sup> |                                                                               |  |
| @ 1310 nm (µm)                   | $9.2 \pm 0.6$                                                                 |  |
| @ 1550 nm (µm)                   | 10.4 ± 0.8                                                                    |  |
| Mechanical                       |                                                                               |  |
| Proof Test (kpsi)                | ≥ 100                                                                         |  |
| Operating Temperature (°C)       | -40 to +150                                                                   |  |

<sup>1</sup> Petermann II Definition



# Verrillon VHS100 Series Fibres

## Specifications

| PART NO.                         | SMF-1-CA-125-2                       | SMF-1-CA-125-3                       |  |  |
|----------------------------------|--------------------------------------|--------------------------------------|--|--|
| Description                      | 125/245 µm Carbon/Acrylate coated,   | 125/245 µm Carbon/Acrylate coated,   |  |  |
|                                  | Single-mode Fibre, 0.12 NA, 200 kpsi | Single-mode Fibre, 0.12 NA, 100 kpsi |  |  |
| PARAMETER                        | VALUE                                |                                      |  |  |
| Material                         |                                      |                                      |  |  |
| Hermetic Coating                 | Carbon                               | Carbon                               |  |  |
| Coating                          | UV Acrylate                          | UV Acrylate                          |  |  |
| Geometry                         |                                      |                                      |  |  |
| Clad Diameter (µm)               | 125 ± 2                              | 125 ± 2                              |  |  |
| Core/Clad Offset (µm)            | ≤ 0.5                                | ≤ 0.5                                |  |  |
| Coating Diameter (µm)            | 245 ± 15                             | 245 ± 15                             |  |  |
| Optical                          |                                      |                                      |  |  |
| NA (nominal)                     | 0.12                                 | 0.12                                 |  |  |
| Attenuation <sup>1</sup>         |                                      |                                      |  |  |
| @ 1310 nm (dB/km)                | ≤ 0.6                                | ≤ 0.6                                |  |  |
| @ 1550 nm (dB/km)                | ≤ 0.5                                | ≤ 0.5                                |  |  |
| Cutoff Wavelength (nm)           | ≤ 1250 ±50                           | ≤ 1250 ±50                           |  |  |
| Mode Field Diameter <sup>2</sup> |                                      |                                      |  |  |
| @ 1310 nm (μm)                   | $9.2 \pm 0.6$                        | $9.2 \pm 0.6$                        |  |  |
| @ 1550 nm (μm)                   | 10.4 ± 1.0                           | 10.4 ± 1.0                           |  |  |
| Mechanical                       |                                      |                                      |  |  |
| Proof Test (kpsi)                | ≥ 200                                | ≥ 100                                |  |  |
| Operating Temperature (°C)       | -40 to +85                           | -40 to +85                           |  |  |

<sup>1</sup> Measured on loose coil

<sup>2</sup> Petermann II Definition





# Verrillon。 VPM400 Series Fibres

Verrillon<sup>®</sup> VPM400 Series is a family of Polarization-Maintaining (PM) Optical Fibres based on the Elliptical-Clad stress technology. These fibres exhibit extremely high birefringence resulting in beat lengths shorter than 2 mm at 1550 nm. VPM400 fibres show significantly lower attenuation at 1550 nm than other PM fibre designs. These fibres are available in various designs and operating wavelengths, as well cladding dimensions including 50, 80 and 125 microns.

#### Features

- Optimized for 1550 nm Single Wavelength Operation
- Round core
- Elliptical Clad designs provide high birefringence allowing the fibre to have an extremely short beat-length, excellent for high-precision gyroscopes
- Radiation-Resistant "Rad-Hard"
- Available in 80 µm clad diameter

#### **Applications**

- Fibre optic gyroscopes
- Fibre lasers
- Current sensors

#### **Specifications**

| PART NO.                                        | PMF-9-A-80-1                                      | PMF-12-A-80-1                                  |
|-------------------------------------------------|---------------------------------------------------|------------------------------------------------|
| Description                                     | 80 µm Elliptical Clad Polarization maintaining    | 80 µm Elliptical Clad Polarization maintaining |
|                                                 | Single-mode Fibre, 1550 nm Operational Wavelength | Single-mode Fibre, 1550 nm Operational         |
|                                                 |                                                   | Wavelength                                     |
| PARAMETER                                       | VALUE                                             |                                                |
| Material                                        |                                                   |                                                |
| Coating                                         | Dual UV Acrylate                                  | Acrylate                                       |
| Stress-inducing Design                          | Elliptical Clad                                   | Elliptical Clad                                |
| Geometry                                        |                                                   |                                                |
| Clad Diameter (µm)                              | 80 ± 2                                            | 80 ± 2                                         |
| Core/Clad Concentricity (µm)                    | ≤ 1.0                                             | ≤ 1.0                                          |
| Coating Diameter (µm)                           | 165 ± 10                                          | 160 ± 10                                       |
| Optical                                         |                                                   |                                                |
| NA (nominal)                                    | 0.20                                              | 0.20                                           |
| Attenuation (dB/km) @ 1550 nm                   | ≤ 0.5                                             | ≤ 1.5                                          |
| Mode Field Diameter <sup>1</sup> (μm) @ 1550 nm | 7.0 ± 1.0                                         | $6.5 \pm 0.5$                                  |
| Operational Wavelength (nm)                     | 1550                                              | 1550                                           |
| Cutoff Wavelength (nm)                          | ≤ 1480                                            | < 1520                                         |
| Beat Length (mm) @ 1550 nm                      | ≤ 2.00                                            | ≤ 2.2                                          |
| Bend Loss <sup>2</sup> (dB/turn) @ 1550 nm      | ≤ 0.05                                            | —                                              |
| H-Parameter                                     | —                                                 | ≤ 5.0 x 10 <sup>-5</sup>                       |
| Mechanical                                      |                                                   |                                                |
| Proof Test (kpsi)                               | ≥ 100                                             | ≥ 100                                          |
| Operating Temperature (°C)                      | -10 to +70                                        | -60 to +80                                     |

<sup>1</sup> Gaussian Definition <sup>2</sup> 12 mm diameter mandrel





# Fibre Optic Component for Umbilical Cable

AFL's Fibre Optic Component for Umbilical Cable is designed for subsea umbilical applications. AFL is the technology owner for hermetic stainless steel tubes which are the key building block for subsea cables. AFL provides customized designs to meet the most stringent requirements. AFL's Fibre Optic Component is suitable for depths of 10,000 feet and beyond.

### Features

- Hermetic Stainless Steel Tube
- High Strength Wire
- Polyethylene Jacketed
- Hydrogen scavenging gel
- Long lengths
- In-line splice technology
- Proven technology
- Long life expectancy
- Custom Jacket Colours

### **Cable Components**



### **Options and Specifications**

| PARAMETER                      | VALUE                                                                        |
|--------------------------------|------------------------------------------------------------------------------|
| Number of Fibres               | Up to 72                                                                     |
| Fibre                          | Single-mode, Multimode, 100 or 200 kpsi proof test                           |
| Stainless Steel Tube Sizes     | 2.4 mm to 3.8 mm                                                             |
| Stainless Steel Tube Types     | 304 or 316L Stainless Steel                                                  |
| Armor                          | 16 x 1.02 mm (0.040") wires, a range of tensile specifications are available |
| Fibre Colours                  | EIA 598 or customer specification                                            |
| Unit Weight                    | 150 to 300 kg/km                                                             |
| Overall Diameter               | 7 mm to 16 mm                                                                |
| Storage Temperature Range      | -40 to +85°C                                                                 |
| Operating Temperature Range    | -40 to +85°C                                                                 |
| Breaking Load                  | Up to 25 kN (dependant on armor selection)                                   |
| Bend Radius (design dependent) | 120 mm to 320 mm                                                             |
| Cable Marking                  | To customer specification                                                    |





# **Specialty Fibre Optic Plastic Buffer Tubes**

AFL provides fibre optic plastic buffer tubes in a variety of sizes with various fibre counts. These tubes can be used in multiple applications as subcomponents in Umbilical Cables, Gas, Sewer and Water Line Fibre Optic Cables, Optical Ground Wire and Sensor Cables.

Anywhere there is a need for a fibre optic cable or component, AFL can provide or engineer the appropriate solution.

### Applications

- Umbilical Cables
- Gas, Sewer and Water Line Fibre Optic Cables
- Optical Ground Wire
- Sensor Cables

### **Specifications**

| ITEM NUMBER | OUTSIDE DIAMETER<br>(INCHES) | INSIDE DIAMETER<br>(INCHES) | WALL THICKNESS<br>(INCHES) | MAXIMUM FIBRE<br>COUNT | OUTSIDE<br>DIAMETER (MM) | INSIDE DIAMETER<br>(MM) |
|-------------|------------------------------|-----------------------------|----------------------------|------------------------|--------------------------|-------------------------|
| 1           | 0.063                        | 0.047                       | 0.008                      | 4                      | 1.60                     | 1.20                    |
| 2           | 0.079                        | 0.055                       | 0.012                      | 6                      | 2.00                     | 1.40                    |
| 3           | 0.083                        | 0.059                       | 0.012                      | 8                      | 2.10                     | 1.50                    |
| 4           | 0.087                        | 0.067                       | 0.010                      | 12                     | 2.20                     | 1.70                    |
| 5           | 0.098                        | 0.075                       | 0.012                      | 12                     | 2.50                     | 1.90                    |
| 6           | 0.106                        | 0.077                       | 0.015                      | 12                     | 2.70                     | 1.95                    |
| 7           | 0.118                        | 0.087                       | 0.016                      | 18                     | 3.00                     | 2.20                    |
| 8           | 0.140                        | 0.106                       | 0.017                      | 24                     | 3.55                     | 2.70                    |

Available in PBT. Others sizes and materials available on request.





#### **Temperature Specifications**

| TEMPERATURE RANGE |                |  |  |  |
|-------------------|----------------|--|--|--|
| INSTALLATION      | -46°C to +85°C |  |  |  |
| OPERATING         | -46°C to +85°C |  |  |  |
| STORAGE           | -55°C to +85°C |  |  |  |

# **Tactical Tight Buffered Cable**

AFL Tactical Tight Buffered Cables are ideal for use in installations where extreme environmental conditions are present. Designed to be deployed and retrieved in the field, AFL's Tactical Tight Buffered Cables are highly resistant to damage caused by repeated impacts crushing forces, abrasion and extreme temperatures.

### Features

- Cut resistant polyurethane jacket with flame retardant options available
- Highly flexible construction allows for multiple deployments
- All aramid strength members
- Performance in wide temperature range
- High impact and crush resistance
- Durable in high traffic areas
- MIL-PRF-46291 qualified fibre available (-RH designation)
- Tested to meet MIL-PRF-85045

### **Cable Components**

### Applications

- Field deployment in abusive environments
- Temporary installation of critical communications lines where quick retrieval and re-use is necessary
- High Traffic areas
- Security and Sensing applications
- Broadcast deployments
- Installations in harsh environments



### Specifications

| CHARACTERISTIC               | TEST PROCEDURE         | PERFORMANCE          |
|------------------------------|------------------------|----------------------|
| Tensile and elongation       | EIA/TIA-455-33         |                      |
| Operating tensile strength   | EIA/TIA-455-33         |                      |
| Low-temp flexibility         | EIA/TIA-455-37         |                      |
| Cyclic flexing               | EIA/TIA-455-104        | 2000                 |
| Crush resistance             | EIA/TIA-455-41         | 1800 N/cm or greater |
| Impact                       | EIA/TIA-455-25         | 200                  |
| Temperature cycling          | EIA/TIA-455-3          | -46°C to 85°C        |
| Temperature/humidity cycling | EIA/TIA-455-5 Method B |                      |
| Life aging                   | EIA/TIA-455-4          |                      |
| Freezing water immersion     | EIA/TIA-455-98         |                      |



# **Tactical Tight Buffered Cable**

### **Mechanical Data**

|                 | FIDDE | NOMINA |        |            |               | MAXIMUM TENSILE LOAD |           | MINIMUM BEND RADIUS |           |
|-----------------|-------|--------|--------|------------|---------------|----------------------|-----------|---------------------|-----------|
| AFL NO.         | COUNT | NOMINA | L DIA. | NOWINA     | <b>L VVI.</b> | LBS (N)              |           | INCHES (CM)         |           |
|                 | COUNT | INCHES | (MM)   | LBS/1000FT | (KG/KM)       | INSTALLATION         | LONG TERM | INSTALLATION        | LONG TERM |
| XU001 30180H-SH | 1     | 0.12   | (3.0)  | 5.4        | (8)           | 135 (600)            | 40 (178)  | 1.8 (4.5)           | 1.2 (3.0) |
| XU001 40180H-SH | 1     | 0.16   | (4.0)  | 9.1        | (13.5)        | 180 (800)            | 54 (240)  | 2.4 (6.0)           | 1.6 (4.0) |
| XU001 46180H-SH | 1     | 0.18   | (4.6)  | 12.2       | (18.1)        | 180 (800)            | 54 (240)  | 2.7 (6.9)           | 1.8 (4.6) |
| XU002 55180H-SH | 2     | 0.22   | (5.5)  | 16.2       | (25)          | 400 (1780)           | 130 (578) | 2.2 (5.5)           | 1.1 (2.8) |
| XU004 55180H-SH | 4     | 0.22   | (5.5)  | 16.2       | (25)          | 400 (1780)           | 130 (578) | 2.2 (5.5)           | 1.1 (2.8) |
| XU002 58180H-SH | 2     | 0.23   | (5.8)  | 21.5       | (32)          | 400 (1780)           | 130 (578) | 3.4 (8.7)           | 2.3 (5.8) |
| XU004 58180H-SH | 4     | 0.23   | (5.8)  | 21.5       | (32)          | 400 (1780)           | 130 (578) | 3.4 (8.7)           | 2.3 (5.8) |
| XU006 61180H-SH | 6     | 0.24   | (6.1)  | 22.2       | (33)          | 400 (1780)           | 130 (578) | 3.6 (9.2)           | 2.4 (6.1) |
| XU008 64180H-SH | 8     | 0.25   | (6.4)  | 28.8       | (44)          | 470 (2090)           | 160 (712) | 2.5 (6.4)           | 1.3 (3.2) |
| XU012 64180H-SH | 12    | 0.25   | (6.4)  | 30.8       | (47)          | 470 (2090)           | 160 (712) | 2.5 (6.4)           | 1.3 (3.2) |
| XU024 85180H-SH | 24    | 0.33   | (8.5)  | 38.7       | (59)          | 670 (2980)           | 220 (979) | 3.3 (8.5)           | 1.7 (4.3) |

Note: Diameter and weight subject to change without notice

For flame retardant jacket option remove the extension -SH from the item number

#### Replace asterisk ( ) in AFL number with number

corresponding below. 5 = 50/125 μm multimode GIGA-Link<sup>™</sup> 600 6 = 62.5/125 μm multimode GIGA-Link<sup>™</sup> 300

9 = Single-mode

K = SM Futureguide SR-15e Bend Insensitive

Fibre Notes/Options

 $G = Elastomer over 500 \ \mu m$ - RH = Indicates Radiation Hardened Fibre





| Operating:    | -55°C to +85°C |
|---------------|----------------|
| Storage:      | -60°C to +85°C |
| Installation. | -50°C to +85°C |

### Mechanical

| PARAMETER    | VALUE      |
|--------------|------------|
| Tensile      |            |
| Installation | 2112 (475) |
| Operational  | 333 (75)   |

# **BU Series Tactical Breakout Cable**

AFL's BU Series Tactical Breakout Cables are ideal for use in harsh environment applications requiring a rugged deployable cable solution. Consisting of 2 mm sub-cables, each optical fibre is suitable for direct termination enabling fast and easy installation. This reduced diameter, light weight, and high strength cable features a tough abrasion resistant polyurethane jacket that offers exceptional performance through a wide range of temperatures. It is also impervious to common chemicals found in industrial environments. Available with a flame retardant jacket option the BU series breakout cable is ideal for use in mines, petrochemical facilities, and other industrial applications.

#### Features

- Deployable design
- UV, Fungus, and water resistant
- Highly crush and impact resistant
- 2.0 mm sub-cables available in a variety of colours
- Available with shiny or matte low-friction jacket
- Custom colours available
- Available with bend insensitive SM and MM optical fibre
- Supports all multi-gigabit Ethernet standards
- RoHS compliant

### **Cable Components**

### **Specifications**

- MIL PRF85045
- ANSI/ICEA-S-104-696
- RoHS Compliant
- Highly abrasion and cut resistant
- Resistant to most fuels, oils and greases
- Excellent low-temperature flexibility



## **Ordering Information**

|                |                | NOMINAL<br>DIAMETER |      | NOMINAL<br>WEIGHT |       | PHYSICAL PROPERTIES |         | MINIMUM                    |
|----------------|----------------|---------------------|------|-------------------|-------|---------------------|---------|----------------------------|
| AFL NO.        | FIBRE<br>COUNT | INCHES              | мм   | LBS/1,000 FT      | KG/KM | CRUSH (N/CM)        | IMPACTS | BEND RADIUS<br>INCHES (CM) |
| BU002 ¥ 20180H | 2              | 0.307               | 7.8  | 35                | 52    | 2000                | 200     | 3.0 (7.5)                  |
| BU004 ¥ 20180H | 4              | 0.307               | 7.8  | 35                | 52    | 2000                | 200     | 3.0 (7.5)                  |
| BU006 ¥ 20180H | 6              | 0.346               | 8.8  | 39                | 58    | 2000                | 200     | 3.5 (8.5)                  |
| BU008 × 20180H | 8              | 0.394               | 10.0 | 52                | 77    | 2000                | 200     | 4 (10)                     |
| BU012 ★ 20180H | 12             | 0.464               | 11.8 | 63                | 93    | 2000                | 200     | 4.3 (11)                   |

★ Please specify fibre type when ordering (see below)

- $5 = 50/125 \ \mu m$  multimode GIGA-Link<sup>TM</sup> 600
- 7 = 50/125 µm multimode GIGA-Link<sup>™</sup> 2000
- $6 = 62.5/125 \ \mu m$  multimode GIGA-Link<sup>TM</sup> 300
- $8=62.5/125 \ \mu m \ multimode \ GIGA-Link^{\rm \tiny TM} \ 1000$
- $9=9/125\ \mu m\ single-mode$
- $L=50/125\ \mu m$  multimode Laser-Link 300 for 10 Gigabit Ethernet

K = Single-mode Futureguide SR-15e Bend Insensitive





 Operating:
 - 46°C to + 85°C

 Installation:
 - 20°C to + 85°C

 Storage:
 -57°C to 85°C

## Braided Armored Tactical Tight Buffered Cable

AFL Armored Tactical Tight Buffered Cables are ideal for use in installations where extreme environmental conditions are present. With the addition of a wire braid embedded within the jacketing system, these cables are highly resistant to damage caused by repetitive impacts, high flex, crush, and abrasion as well as other harsh conditions. By utilising AFL's tight buffered fibre technology field, termination is simplified.

### Features

- Cut resistant polyurethane outer jacket
- Highly flexible construction allows for multiple deployments
- Performance in wide temperature range
- High impact and crush resistance
- Durable in high traffic areas
- Water and UV resistant
- Multiple jacket colours available
- Capable of supporting all Multi-Gigabit Ethernet Protocols

### **Cable Components**



### Applications

- Field deployment in abusive environments
- High traffic areas
- Security and sensing applications
- High Flex Applications
- Installations in industrial environments
- Temporary installation of critical communications lines where quick retrieval and re-use is necessary

### **Ordering Information**

|                          |                | NOMINAL<br>DIAMETER |      | NOMINAL<br>WEIGHT |       | TENSION<br>LBS (N) |           | MINIMUM                    |
|--------------------------|----------------|---------------------|------|-------------------|-------|--------------------|-----------|----------------------------|
| AFL NO.                  | FIBRE<br>COUNT | INCHES              | мм   | LBS/1,000 FT      | KG/KM | INSTALLATION       | LONG TERM | BEND RADIUS<br>INCHES (CM) |
| XU001 <b>*</b> 30180#-BB | 1              | 0.26                | 6.6  | 42.4              | 64    | 250 (1112)         | 66 (290)  | 2.6 (6.6)                  |
| XU002 <b>*</b> 58180#-BB | 2              | .374                | 9.5  | 82.5              | 124   | 325 (1450)         | 66 (290)  | 3.7 (9.5)                  |
| XU004 <b>*</b> 58180#-BB | 4              | .374                | 9.5  | 82.5              | 124   | 325 (1450)         | 66 (290)  | 3.7 (9.5)                  |
| XU006 × 61180 #-BB       | 6              | .386                | 9.8  | 85.5              | 128   | 325 (1450)         | 66 (290)  | 3.8 (9.8)                  |
| XU012 <b>*</b> 70180#-BB | 12             | .421                | 10.7 | 104.7             | 156   | 394 (1750)         | 79 (350)  | 4.2 (10.7)                 |

Note: Diameter and weight subject to change without notice

Replace asterisk (\*) in AFL number with number corresponding below.

- $5 = 50/125 \ \mu m$  multimode GIGA-Link<sup>TM</sup> 600
- $6 = 62.5/125 \ \mu\text{m} \ \text{multimode} \ \text{GIGA-Link}^{^{\text{TM}}} \ 300$
- 9 = Single-mode
- K = SM Futureguide SR-15e Bend Insensitive
- \* Other fibre types available.

#### Replace pound sign (#) in AFL number with number corresponding below. $G=500~\mu m$ Coated Optical Fibre

 $H = 250 \ \mu m$  Coated Optical Fibre





| Operating:    | -55°C to +85°C |
|---------------|----------------|
| Storage:      | -60°C to +85°C |
| Installation: | -50°C to +85°C |

### Mechanical

| PARAMETER    | VALUE      |
|--------------|------------|
| Tensile      |            |
| Installation | 2112 (475) |
| Operational  | 333 (75)   |

## BU Series Braided Armored Breakout Cable

AFL's BU Series Braided Armored Breakout Cables are ideal for use in harsh environment applications requiring a rugged deployable cable solution. Consisting of 2 mm sub-cables, each optical fibre is suitable for direct termination enabling fast and easy installation. This reduced diameter, light weight, and high strength cable features a tough abrasion resistant polyurethane jacket that offers exceptional performance through a wide range of temperatures. It is also impervious to common chemicals found in industrial environments. Available with a flame retardant jacket option the BU series breakout cable is ideal for use in mines, petrochemical facilities, and other industrial applications.

### Features

- Deployable design
- UV, Fungus, and water resistant
- Highly crush and impact resistant
- 2.0 mm sub-cables available in a variety of colors
- Available with shiny or matte low-friction jacket
- Custom colours available
- Available with bend insensitive SM and MM optical fibre
- Supports all multi-gigabit Ethernet standards
- RoHS compliant

### **Cable Components**



## **Ordering Information**

|                          |                | NOM<br>DIAM | INAL<br>ETER | NOMINAL<br>WEIGHT |       | PHYSICAL PROPERTIES |         | MINIMUM                    |
|--------------------------|----------------|-------------|--------------|-------------------|-------|---------------------|---------|----------------------------|
| AFL NO.                  | FIBRE<br>COUNT | INCHES      | ММ           | LBS/1,000 FT      | KG/KM | CRUSH (N/CM)        | IMPACTS | BEND RADIUS<br>INCHES (CM) |
| BU002 <b>*</b> 20180H-BB | 2              | 0.452       | 11.5         | 113               | 68    | 2000                | 200     | 4.5 (11.5)                 |
| BU004 ★ 20180H-BB        | 4              | 0.452       | 11.5         | 113               | 68    | 2000                | 200     | 4.5 (11.5)                 |
| BU006 ¥ 20180H-BB        | 6              | 0.492       | 12.5         | 124               | 185   | 2000                | 200     | 4.9 (12.5)                 |
| BU008 <b>*</b> 20180H-BB | 8              | 0.539       | 13.7         | 147               | 219   | 2000                | 200     | 5.4 (13.7)                 |
| BU012 ¥ 20180H-BB        | 12             | 0.610       | 15.5         | 178               | 9265  | 2000                | 200     | 6.1 (15.5)                 |

★ Please specify fibre type when ordering (see below)

 $5=50/125~\mu m$  multimode GIGA-Link  $^{\rm \scriptscriptstyle M}$  600

7 = 50/125 µm multimode GIGA-Link<sup>™</sup> 2000

 $6 = 62.5/125 \ \mu m \ multimode \ GIGA-Link^{TM} \ 300$ 

 $8 = 62.5/125 \ \mu m \ multimode \ GIGA-Link^{{}^{\scriptscriptstyle{\mathsf{TM}}}} \ 1000$ 

 $9=9/125\ \mu m\ single-mode$ 

 $L=50/125\ \mu m$  multimode Laser-Link 300 for 10 Gigabit Ethernet

K = Single-mode Futureguide SR-15e Bend Insensitive

## Specifications

- MIL PRF 85045
- ANSI/ICEA-S-104-696
- RoHS Compliant
- Highly abrasion and cut resistant
- Resistant to most fuels, oils and greases
- Excellent low-temperature flexibility
- Braid application per IEEE 1580 available





| Operating:    | -40°C to $+70$ °C |
|---------------|-------------------|
| Storage:      | -60°C to +50°C    |
| Installation: | -20°C to +50°C    |

### Mechanical

| PARAMETER    | VALUE      |
|--------------|------------|
| Tensile      |            |
| Installation | 2670 (600) |
| Operational  | 800 (180)  |

## Industrial Loose Tube Cable, LSZH, OFCG-LS, Aluminum Interlock Armor

AFL's Industrial Loose Tube Cables are designed for high reliability in heavy industrial and harsh environment applications. Consisting of a formed metallic armor, the cable features superior crush resistance and a high degree of flexibility. Furthermore, the cable features a flame retardant LSZH jacket which is UV stabilized and highly resistant to chemicals commonly found in industrial environments. With an OFCG-LS listing, the cable is suitable for both indoor and outdoor industrial installations.

### Features

- Eliminates need for conduit
- Simplified one-step installation
- Highly crush resistant
- Resistant to lubricating oil, gasoline, deionized water and many other chemicals
- Gel-free buffer tubes SZ stranded for quick easy access
- Available with bend insensitive SM and MM optical fibre
- Supports all multi-gigabit Ethernet standards

### **Cable Components**

### Specifications

- OFCG-LS, IEEE 1202 / FT4, UL1685
- ANSI/ICEA-S-104-696
- CSA 22.2 #230 and #232
- NFPA 130 / 502
- RoHS Compliant
- Sun light resistant
- Oil Res II compliant jacketing system



## **Ordering Information**

|                         |           |                | NOMINAL DIAMETER |       | NOMINAL WEIGHT |       | MINIMUM BEND RADIUS |               |
|-------------------------|-----------|----------------|------------------|-------|----------------|-------|---------------------|---------------|
|                         |           | # OF BUFFER    |                  |       |                |       |                     | OPERATION     |
|                         | FIBRE     | TUBES / FIBRES |                  |       |                |       | INSTALLATION        | (10XOD) IN/CM |
| AFL NO.                 | COUNT     | PER TUBE       | INCHES           | MM    | LBS/1,000 FT   | KG/KM | (20XOD) IN/CM       |               |
| LLO <b>*</b> C5111A1D   | 6 - 60    | 5 / 12         | 0.75             | 19.11 | 204            | 304   | 15/38               | 7.5/19.1      |
| LL072 × C6111A1D        | 60-72     | 6 / 12         | 0.81             | 20.68 | 228            | 341   | 16.2/42             | 8.1/21        |
| LL096 × C8111A1D        | 72-96     | 8 / 12         | 0.87             | 21.98 | 258            | 385   | 17.4/44             | 8.7/22        |
| LL144 <b>*</b> CC111A1D | 96 - 144  | 12 / 12        | 0.96             | 24.5  | 339            | 506   | 19.2/49             | 9.6/24.5      |
| LL288 * CO311A1D        | 144 - 288 | 24 / 12        | 1.14             | 28.9  | 519            | 774   | 22.8/57.8           | 11.4/28.9     |

**\star** Please specify fibre type when ordering (see below)

5 = 50/125 µm multimode GIGA-Link<sup>™</sup> 600

 $7 = 50/125 \ \mu \text{m}$  multimode GIGA-Link<sup>TM</sup> 2000

 $6 = 62.5/125 \,\mu m$  multimode GIGA-Link<sup>TM</sup> 300

 $8 = 62.5/125 \ \mu m$  multimode GIGA-Link<sup>TM</sup> 1000

 $9 = 9/125 \ \mu m \ single-mode$ 

 $L = 50/125 \ \mu m$  multimode Laser-Link 300 for 10 Gigabit Ethernet

 $K=\mbox{Single-mode}$  Future guide SR-15e Bend Insensitive





## Distributed Temperature Sensing LSZH Fibre Optic Cable

Fibre Optic Distributed Temperature Sensing Cables from AFL are customized to suit the specific needs of the customer's application. AFL cables are specially designed for durability and reliability and are used in varying applications and environments. Suitable for outdoor applications with its UV stabilized jacket and limited indoor applications with its LSZH jacket (IEC 60332-1-2:2004 qualified). Quick and easy to install without special equipment or know how, these cables are an ideal solution and can be used with any DTS manufacturers' equipment.

### Benefits

- Cost effective solution compared with steel tube alternatives
- Easy installation
- Installations up to 6 km continuous length
- No specialised installation knowledge or equipment needed
- Jacket colouring and printing available to customer specification

### **Cable Components**

### Features

- Low smoke zero halogen jacket
- UV light stabiliser
- High tensile performance
- Small outside diameter
- Flexible



### **Specifications**

| PARAMETER           | VALUE                                                                                                                                                                                                                                                                                         |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jacket Material     | Low Smoke Zero Halogen                                                                                                                                                                                                                                                                        |
| Cable Weight        | $18 \pm 1 \text{ kg} / \text{km}$                                                                                                                                                                                                                                                             |
| Minimum Bend Radius | 80 mm                                                                                                                                                                                                                                                                                         |
| Fibre Colours       | Blue, Orange                                                                                                                                                                                                                                                                                  |
| Standard            | Cable is Designed, manufactured and tested in accordance with<br>ISO 9001 IEC 60332-1-2:2004, Tests on electric and optical fibre cables<br>under fire conditions – Part 1-2: Test for vertical flame propogation for<br>a single-insulated wire or cable – Procedure for 1 kW premixed flame |





# High Strength Steel Wire (HSSW) Armored Fibre Optic Cable

AFL's High Strength Steel Wire (HSSW) Armored Fibre Optic Cable provides the reliability needed for network backbones in harsh environment conditions. The high strength, galvanized plow steel armor is enhanced and offers a significant improvement in mechanical performance as compared to traditional steel tape armored cables.

With a near ten-fold improvement in tensile performance, a two-fold improvement in crush resistance and a three-fold improvement in impact energy resistance, AFL's HSSW Armored Fibre Optic Cable provides the strength and durability needed for the most extreme conditions. Ideal for use as a direct buried cable in heavy construction zones including wind farm developments, pipelines, oil and gas fields, heavy industrial sites and a variety of additional harsh environments, AFL's HSSW Armored Cable meets or exceeds all requirements specified in Telcordia GR-20-Core.

### **Cable Components**



## **Physical Properties**

| PARAMETER            | VALUE                                                           |
|----------------------|-----------------------------------------------------------------|
| Fibre Count          | 1-60 *                                                          |
| Nominal Diameter     | 0.65 inches / 16.5 mm                                           |
| Nominal Weight       | 335 lbs/1000 ft. / 500 kg/km                                    |
| Maximum Tensile Load | 5,000 lbs/ 22.2 kN **                                           |
| Minimum Bend Radius  | 13 inches / 33 cm                                               |
| Temperature Range    | Installation: -40°C to + 70°C<br>Operation: -50°C to + 70°C *** |

\* Any combination of up to 60 fibres available

- \*\* Higher strength options available upon request
- \*\*\* Expanded temperature ranges available upon request





### Features

- Hermetic Stainless Steel Tube
- High Strength Wire
- Jacket Options
- Gel Options
- Flexible
- Rugged

# **Armored Stainless Steel Tubes**

Armored Stainless Steel Cables from AFL are based on our patented tube technology which provides for a hermetic seal. The armor wires provide improved crush and tensile performance while maintaining good flexibility. Armored Stainless Steel Tubes can be used in a variety of applications such as temperature sensing and surface cable.

## **Cable Components**



## **Options and Specifications**

| FIBRE COUNT | TUBE O.D.<br>(mm) | FINAL O.D.<br>(mm) | WEIGHT<br>(kg/km) | BREAKING<br>STRENGTH<br>(kg) | BEND<br>RADIUS<br>(mm) |
|-------------|-------------------|--------------------|-------------------|------------------------------|------------------------|
| 4           | 1.32              | 2.12               | 16                | 222                          | 132                    |
| 6           | 2.00              | 3.20               | 38                | 526                          | 200                    |
| 12          | 2.40              | 3.60               | 45                | 619                          | 240                    |

Based on 200 kpsi Gips wire, gel filled tube

## **Encapsulation Option**

| PARAMETER      | VALUE                               |
|----------------|-------------------------------------|
| Materials      | Polypropylene, Nylon, PVDF, Hytrel™ |
| Diameter       | To customer specifications          |
| Cable markings | To customer specifications          |







## Applications

- Umbilical Cables
- Downhole Cables for Oil and Gas
- Towed Arrays
- High Temperature Cables
- Hybrid Cables
- Sensor Cable
- OPGW

# **Stainless Steel Fibre Optic Tubes**

As the inventor and owner of the technology for placing optical fibres into stainless steel tubes, AFL offers a range of tube sizes and fibre counts for a variety of applications. Each tube is flooded with a thixotropic filling compound and hermetically sealed to protect the enclosed fibres from environmental degradation. This product is sometimes referred to as FIST (Fibre in Steel Tube) or FIMT (Fibre in Metal Tube).

### **Jacket Options**

AFL can encapsulate any of our stainless steel tubes with any of the following polymers:

- Hvtrel<sup>™</sup>
- Santoprene<sup>™</sup>
- Polyethylene
- Polypropylene
- Nylon
- PVDF

### **Cable Components**





## **Specifications (without jacketing)**

| OPTION<br>NUMBER | MAXIMUM<br>FIBRE COUNT | OUTSIDE<br>DIAMETER<br>inches (mm) | INSIDE<br>DIAMETER<br>inches (mm) | WALL<br>THICKNESS<br>inches (mm) |
|------------------|------------------------|------------------------------------|-----------------------------------|----------------------------------|
| 1                | 3                      | 0.046 (1.17)                       | 0.036 (0.91)                      | 0.005 (0.127)                    |
| 2                | 4                      | 0.052 (1.32)                       | 0.042 (1.07)                      | 0.005 (0.127)                    |
| 3                | 4                      | 0.055 (1.40)                       | 0.039 (1.00)                      | 0.008 (0.200)                    |
| 4                | 4                      | 0.065 (1.65)                       | 0.049 (1.25)                      | 0.008 (0.200)                    |
| 5                | 6                      | 0.071 (1.80)                       | 0.055 (1.40)                      | 0.008 (0.200)                    |
| 6                | 8                      | 0.074 (1.88)                       | 0.058 (1.47)                      | 0.008 (0.200)                    |
| 7                | 8                      | 0.078 (1.98)                       | 0.062 (1.57)                      | 0.008 (0.200)                    |
| 8                | 8                      | 0.079 (2.00)                       | 0.063 (1.60)                      | 0.008 (0.200)                    |
| 9                | 12                     | 0.092 (2.33)                       | 0.076 (1.93)                      | 0.008 (0.200)                    |
| 10               | 16                     | 0.094 (2.38)                       | 0.078 (1.98)                      | 0.008 (0.200)                    |
| 11               | 16                     | 0.095 (2.40)                       | 0.079 (2.00)                      | 0.008 (0.200)                    |
| 12               | 16                     | 0.098 (2.49)                       | 0.082 (2.08)                      | 0.008 (0.200)                    |
| 13               | 16                     | 0.106 (2.69)                       | 0.090 (2.29)                      | 0.008 (0.200)                    |
| 14               | 24                     | 0.118 (3.00)                       | 0.102 (2.60)                      | 0.008 (0.200)                    |
| 15               | 36                     | 0.125 (3.20)                       | 0.109 (2.80)                      | 0.008 (0.200)                    |
| 16               | 48                     | 0.134 (3.40)                       | 0.119 (3.00)                      | 0.008 (0.200)                    |
| 17               | 60                     | 0.142 (3.60)                       | 0.126 (3.20)                      | 0.008 (0.200)                    |
| 18               | 72                     | 0.150 (3.80)                       | 0.134 (3.40)                      | 0.008 (0.200)                    |
| 19               | 72                     | 0.156 (3.96)                       | 0.140 (3.56)                      | 0.008 (0.200)                    |
| 20               | 72                     | 0.158 (4.00)                       | 0.142 (3.60)                      | 0.008 (0.200)                    |
| 21               | 72                     | 0.165 (4.20)                       | 0.150 (3.80)                      | 0.008 (0.200)                    |

Available in Stainless Steel 304, 316 and Incoloy 825. Others sizes and materials available on request.





# Fibre Rod

AFL's Fibre Rod takes an optical fibre of the customer's choice and encases it in a glass re-enforced matrix. The diameter of the structure is adjusted to provide the characteristics needed for the specific application. The performance of the optical fibre is retained in this structure providing for a very ruggedized fibre suitable for many harsh applications. Fibre Rod is best suited for high tensile or compressive requirements where the glass structure provides the rigidity to protect the optical fibre from harm. Additionally, AFL's Fibre Rod does not exhibit the typical curvature coming off the payoff reel like that of most cables. This makes deployments in applications such as pipelines and oil wells simpler. Applications such as strain sensing and temperature sensing in a host of environments up to 200°C are ideal for this product.

### **Features/Options**

- Strength Variable as glass matrix diameter can be increased which increases strength
- Bend Diameter 50x the outer diameter
- Temperature Performance Standard is 85°C
- Ruggedised Option Product can be jacketed with various polymers such as PVDF, Hytrel, Polyethylene, Nylon, PVC, Fire Retardant PE, Polyurethane and others
- Available in lengths of up to 6 kilometers

### Cable Components



### Specifications

|                        | VALUE   |         |                   |  |  |  |
|------------------------|---------|---------|-------------------|--|--|--|
| PARAMETER              | OD (mm) | ID (mm) | TOLERANCE (+/-mm) |  |  |  |
| 85°C Version           |         |         |                   |  |  |  |
| Optical Fibre          | 0.125   | n/a     | 0.001             |  |  |  |
| Coating (Silicone PFA) | 0.700   | 0.125   | 0.100             |  |  |  |



## Notes

#### **ANZ Head Office**

93-97 Merrindale Drive Croydon South VIC 3136 AUSTRALIA TEL: +61 3 9737 4200

#### **Cable Manufacturing**

100 Olympia Street Tottenham VIC 3012 AUSTRALIA TEL: +61 9316 8300 **Sydney** 13/14 Boden Road Seven Hills NSW 2147 AUSTRALIA TEL: +61 2 9421 4200

Newcastle TEL: +61 416 652 749

Brisbane 2/50 Borthwick Avenue Murarrie QLD 4172 AUSTRALIA TEL: +61 7 3292 1400

Perth 1/32 Robinson Avenue Belmont WA 6104 AUSTRALIA TEL: +61 8 6253 2200 Canberra 3/7 Beaconsfield Street Fyshwick ACT 2609 AUSTRALIA TEL: +61 2 6143 2300

Adelaide 1/151-153 Gilles Street Adelaide SA 5000 AUSTRALIA TEL: +61 8 8223 1919

#### Auckland

8/11 Orbit Drive Rosedale, North Shore Auckland 0632 NEW ZEALAND TEL: +64 9 927 7140



Australia 1300 232 476 | New Zealand +64 (0) 9 927 7140 www.AFLglobal.com

© 2018 AFL, all rights reserved. 1299 04.2018



