FAFL

Fiber Optics Demystified OTDR Fundamentals

Apr-2024

©2024 - AFL Confidential

Part 2 April 23rd, 2024, 2pm EST

"From Glitches to Glory: OTDR Problem-Solving Strategies"

OTDR Basics – Presentation Outline

Characteristics of Fiber Optic Networks

- Attenuation (Loss)
- Reflections (Reflectance & ORL)
- Rayleigh Scattering & Fresnel Reflections
- Wavelength-dependent fiber loss
- Bend-dependent fiber loss
- Connectors & Splices

OTDR Overview

- OTDR Theory of Operation
- Why Use an OTDR?
- When & Where to Use an OTDR?

OTDR Test Settings & OTDR Performance

- Dynamic Range & Dead Zone
- Automatic, Expert & Real-time Test Modes
- Range, Pulse Width, Averaging Time

Interpreting an OTDR Trace

- Trace Overview Reflection & Loss vs. Distance
- Link Length, Loss & ORL
- Event Location, Loss & Reflectance
- UPC & APC Connectors
- Fusion & Mechanical Splices
- Macro-bends & Micro-bends
- Splitters

Interpreting OTDR LinkMap & Event Table

- Understanding the Icons
- Pass/Fail Analysis

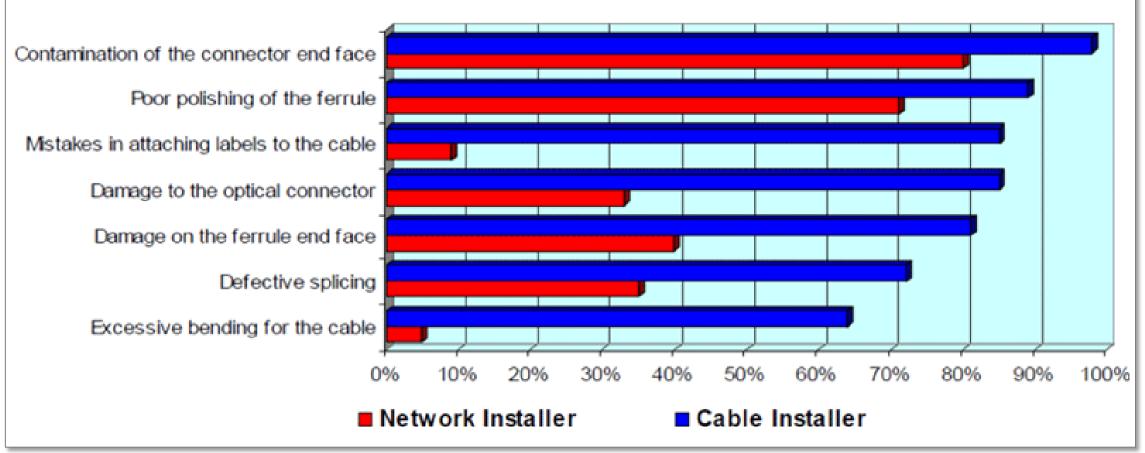
Saving, Downloading & Reporting Results

- OTDR File Formats
- Report Generation Software

Fiber Optic Network Characteristics

Key Factors Affecting Fiber Optic Network Performance

- What are Key Optical Network Factors affecting fiber optic system performance?
 - **RX Power Level / Optical Loss** through the network
 - **Reflections** in the network
 - Chromatic Dispersion / Polarization Mode Dispersion (CD/PMD)
- How do low power, excess loss, reflection and dispersion impact performance?
 - Optical System performance degrades
 - Bit Error Rate increases
 - Packet loss & retransmission increases in packet-based networks (IP, Ethernet)
 - Communication fails (signal lost) when RX power too low (too much optical loss)
- What to do when system performance degrades or fails?
 - Check System Power Levels
 - Check TX Power Level If absent or too low, replace optical TX
 - Check RX Power Level If absent or too low and TX power OK, check for excess loss in optical network
 - If RX Power OK, check for excess reflections in optical network
 - If no excess reflections, possibly check CD/PMD (for networks operating at 10 Gb/s or higher)



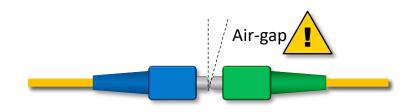
Primary Causes of Optical Network Failures

Poor connections & splices are the primary causes of optical network failures

Source: NTT Advanced Technology

Causes of Optical Loss in Fiber Networks

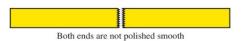
• Dirty, Damaged, or Mismatched Connectors

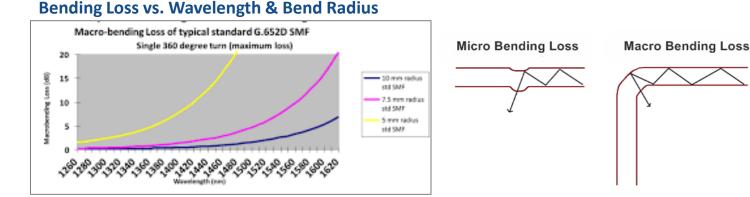

- Always clean connectors before mating
- Never mate PC (blue) to Angled PC (APC; green)
- Fully seat connectors in bulkhead adapters
- Replace damaged connectors with factory-polished connectors

• Poor Splices

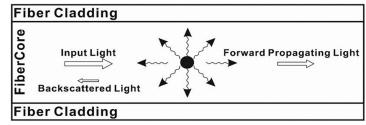
- Strip, clean, cleave in that order
- Clean and maintain fusion splicer
- Rotate cleaver blade when worn
- Core alignment machines produce better splices than cladding alignment

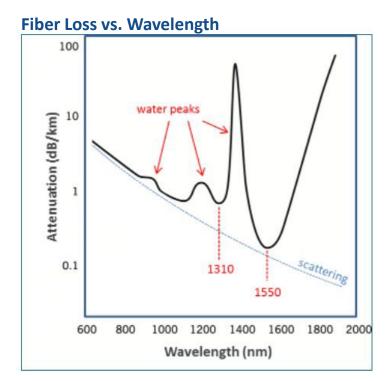
• Fiber Breaks


- "Backhoe fade"
- Rodents
- Maintenance activity / unintended disconnect



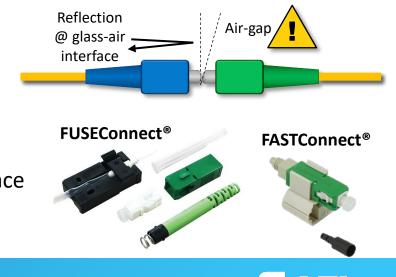
Causes of Optical Loss in Fiber Networks (cont.)


- Fiber loss due to Rayleigh Scattering
 - Primary source of loss along the full length of the fiber
 - Loss/distance (dB/km) is higher at 1310 than 1550 nm
 - Captured backscattered light is used by OTDR to measure loss


• Fiber loss due to Micro-bends or Macro-bends

- Micro-bends: Due to cabling, pulling or environmental stress
- Macro-bends: Due to tight bends typically in cabinets & closures
- Bending loss increases at longer wavelengths
- Tighter bends create higher loss

Rayleigh Scattering



Reflections in Optical Networks

- Fresnel Reflections occur due to mismatch in Group Index-of-Refraction (GIR or IOR)
 - Glass and air have different index of refraction
 - Difference in IOR results in 4% reflection at glass-air interface
 - Slight IOR mismatch between polished & unpolished glass causes small reflection at mated connectors
 - Reflections from open PC connectors are guided back up the fiber
 - APC connectors prevent reflections from being guided back up the fiber
- Multiple reflections degrade optical system performance
 - Impact of reflections is more serious at higher data rates
- Preventing reflections
 - Inspect and clean connectors before mating
 - Never mate PC or UPC (blue) to APC (green) connectors
 - Terminate fibers with factory-polished connectors
 - If field-polishing, ensure epoxy is cleaned & polished off connector end-face
 - Don't over-polish as this may dimple fiber core creating an air gap

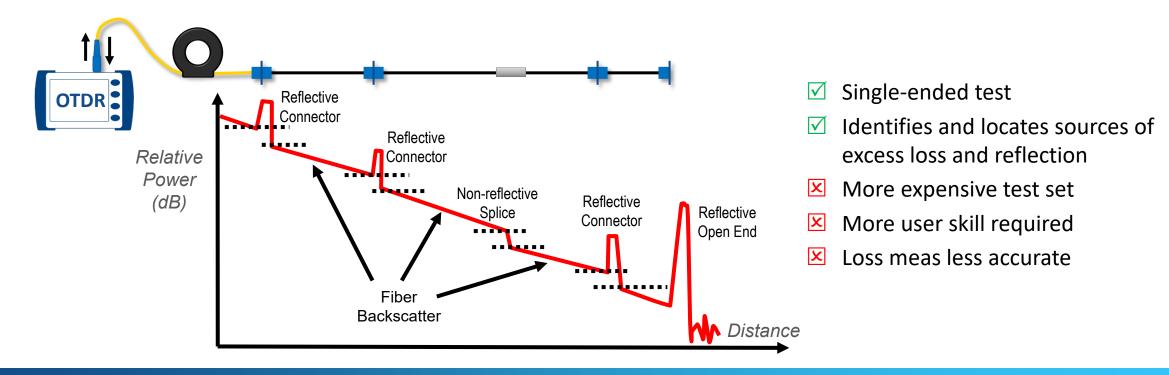
Measuring End-to-end Length & Insertion Loss

- Sum of *all* losses through the network
- Most accurately measured using Optical Source (OLS) and Optical Power Meter (OPM)
 - Simple, fast, pass/fail test (loss is OK, or loss exceeds loss budget)
 - Cannot identify or locate sources of excess loss or reflection X
 - Requires two people, one at each end of the network X
- Can be measured nearly as accurately using an OTDR
 - Can be completed by one person at one end of the network $|\mathbf{v}|$
 - Can identify and locate sources of excess loss & reflections \checkmark
 - Requires more skilled technician X

FDF

Network-Under-Test

FDF

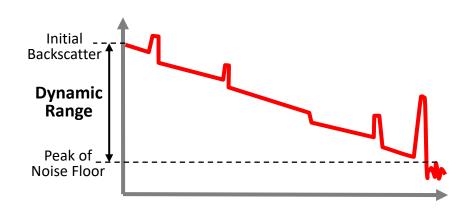


OTDR Overview

OTDR Theory of Operation

An OTDR is a one-dimensional optical radar

- Injects pulses of light, measures amplitude & time-of-flight of backscatter & reflections guided back up fiber
- Converts time-of-flight into distance based on speed of light in glass
- Plots returned signal level vs. distance
- Can measure loss of fiber sections, loss & reflectance of connections, splices, macrobends or breaks.


OTDR Dynamic Range & Dead Zone

What is **Dynamic Range**?

- **Dynamic Range** = Difference in dB between initial backscatter and peak of noise floor
- Dynamic Range depends on Pulse Width & Averaging Time
 - Wider pulse width increases dynamic range
 - Longer averaging time increases dynamic range
- Loss Measurement Range ≈ Dynamic Range 6 dB
- **Distance Measurement Range** ≈ Loss Meas Range / 0.5 dB/km
 - Assuming no faults and no PON splitters

What is **Dead Zone**?

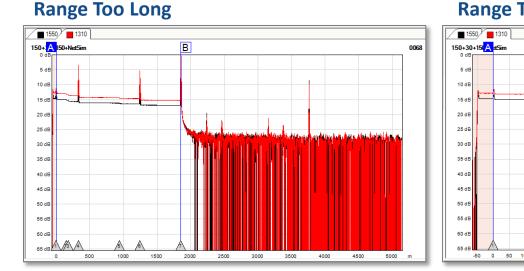
- Event Dead Zone How close two reflective events can be and still be visually detected
- Attenuation Dead Zone How closely small non-reflective event can be detected following a reflection
- Dead Zones depend on Pulse Width
 - Width of spike in OTDR trace due to a reflection is \geq pulse width
 - Wider pulse width increases dead zone
 - Wider pulse width reduces ability to independently detect closely-spaced connectors & splices

OTDR Test Settings & Performance

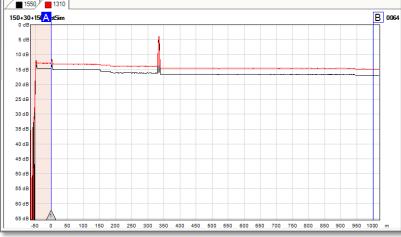
OTDR Test Modes

• Automatic Mode -- OTDR automatically sets Range, Pulse Width(s), and Averaging Time

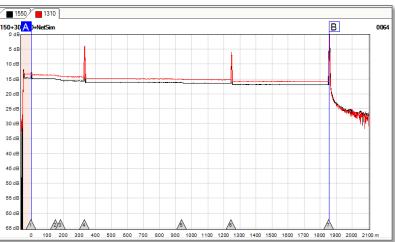
- ✓ Prevents users from selecting inappropriate settings
- ✓ Typically completes test at both 1310 & 1550 nm wavelengths
- ☑ Newer OTDRs complete automatic tests using both narrow, medium and wide pulse widths
- ☑ May not be able to test short range on long fiber
- May take longer to test short fibers


• Expert Mode – User manually sets Wavelengths, Range, Pulse Width & Averaging Time

- ☑ User can tailor settings for best performance on a specific region of the fiber
- ✓ User can reduce test time (e.g., test using a single wider pulse width, but shorter averaging time)
- Poor test settings produce poor results (missed end, missed events) and may confuse user
- Example X Testing at a single wavelength will not detect macro-bends
- Real-time Mode Real-time trace updates with little averaging
 - Allows OTDR user to verify fiber-under-test is the fiber a user in field is working on
 - Allows OTDR user to determine when mechanical splice is optimized for minimum loss & reflection
 - Doesn't detect & evaluate events; Doesn't save results

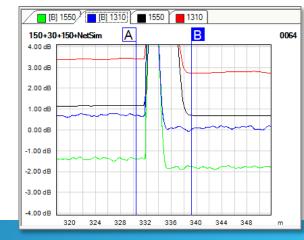


Expert & Real-time Range Selection


- Range too long
 - ✓ End & events found
 - Trace compressed at start
 - ☑ Lower resolution since data-spacing may be increased
 - ☑ Dynamic Range reduced since #pulses reduced for a given averaging time
- Range too short
 - ☑ Can use with shorter pulse widths to detect closely-spaced events near start of fiber
 - ☑ Misses the end of the fiber and events beyond test range
 - May alias reflections beyond end of test range into trace for selected range

Range Too Short (End not found)

Range Just Right (End & all events found)

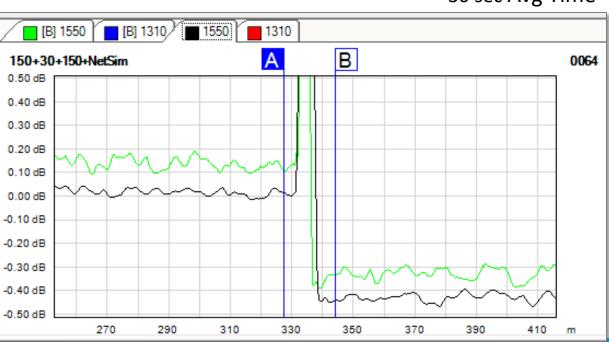

Manual Mode Pulse Width Selection

- Narrow pulses reduce dead zone
 - Prevents closely-spaced events from overlapping
 - ✓ Allows closely-spaced events to be independently detected and measure
 - Reduces backscatter level, reducing measurement range
- Wider pulses increase dynamic range
 - ☑ Raises backscatter level, increasing measurement range
 - Allows end and events to be found on longer fibers
 - Doubling Pulse Width improves DR by ≈1.5 dB (more accurate measurements)
 - Causes closely-spaced events to overlap, preventing independent event detection & measurement

30 ns vs. 5 ns Pulse:

- 30 ns increases dead zone
- 2 events 3m (10 ft) apart will overlap using 30 ns
- 2 events 3m (10 ft) apart will be detected using 5 ns

Pulse Width and Dead Zone:


- Round-trip speed of light in fiber ≈10 ns/m
- Dead zone from 10 ns pulse ≥ 1 m of fiber

Pulse Width	Pulse Dead Zone	
5 ns	> 0.5 m	> 1.6 ft
10 ns	>1 m	> 3.3 ft
50 ns	> 5 m	> 16.4 ft
100 ns	> 10 m	> 32.8 ft
500 ns	> 50 m	> 164 ft
1 µs	> 100 m	> 328 ft
10 µs	> 1000 m	> 3,280 ft
20 µs	> 2000 m	> 6,560 ft

- 30 ns vs. 5 ns Pulse:
- 30 ns reduces noise
- Detects smaller events
- ✓ Tests longer fibers
- More reliably measures event loss

Manual Mode Averaging Time Selection

- Short Averaging Time produces noisy traces
 - Shorter test time
 - Less reliable event detection
 - Less accurate measurements
- Increasing Averaging Time reduces noise in traces
 - ☑ More reliable event detection, especially on longer fibers
 - More accurate measurements
 - **Ex** Longer test time
 - Diminishing returns
 - Doubling Avg Time improves DR 0.75 dB

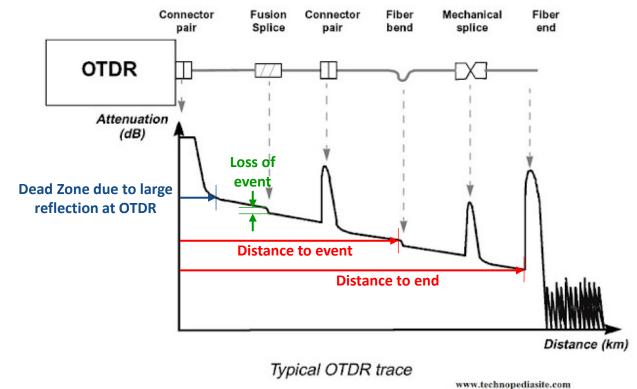
5 sec Avg Time

30 sec Avg Time

Using and Configuring Launch and Receive Cables

- Why use a Launch Cable?
 - Launch cable separates OTDR connection from connection to network-under-test
 - Moves network-under-test connection beyond dead-zone due to OTDR connection
 - Allows loss & reflection of connection to network-under-test to be measured
 - If short jumper used to connect OTDR to network, first connector will be in OTDR's dead zone
 - If launch cable shorter than OTDR test pulse width, first connector will be in OTDR's dead zone
- Why use a **Receive Cable** (aka **Tail Cord**)?
 - Loss of open connection at far end cannot be measured
 - Receive cable adds fiber beyond far-end connector
 - ☑ Allows loss & reflectance of far-end connection to be measured
 - If receive cable too short, receive cable end will be in dead-zone of connection to receive cable
 - Drawback: Requires technician at far-end to connect receive cable
- Configuring Length of Launch & Receive cables
 - Launch cable length should be 3-5 x short pulse widths (\leq 100 ns); 1.5 2 x longer pulse widths
 - Configure OTDR for length of connected launch and receive cables
 - If unsure of launch cable length, connect launch cable and run OTDR test to measure its length
 - OTDR 0.0 distance at launch cable connection to network-under-test
 - Misconfigured launch or receive cable lengths will result in incorrect length & location measurements

150m (492 ft) Launch Cable



Interpreting OTDR Trace, LinkMap & Event Table

Interpreting the OTDR Trace

- OTDR Trace plots Loss (Attenuation) vs. Distance
- Make manual loss & distance measurements using A&B cursors
- Spikes at reflective connectors & mechanical splices
- Small drop at non-reflective splices and APC connectors
- Large spike at poor connectors & open ends

Measuring End-to-End Length & Loss using the OTDR Trace

Where to place A & B cursors?

- Place **Cursor A** on left (beginning) edge of **Start** event
 - If launch cord used, place cursor A at launch cable connection to network
 - Loss measurement will include loss of connection to network
 - Zoom in on trace for more accurate cursor placement
- Place **Cursor B** on left (beginning) edge of **End** event
 - Loss measurement will not include loss of last connector

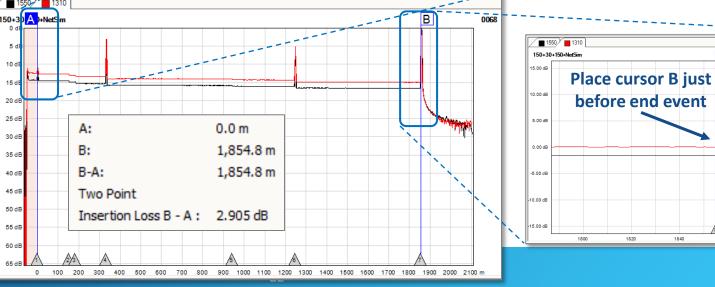
30 dB

35 dB

40 dB

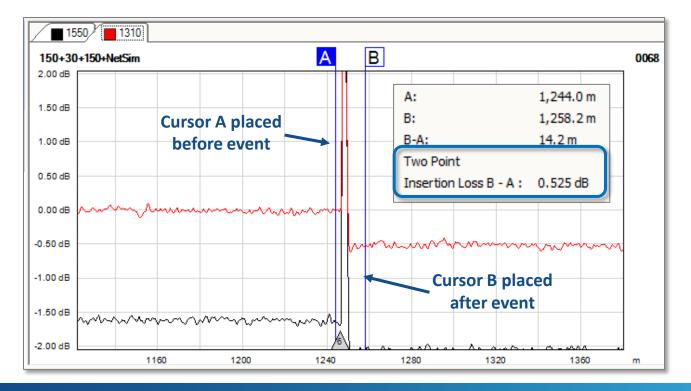

45 dB

50 dB


55 dB

60 dB

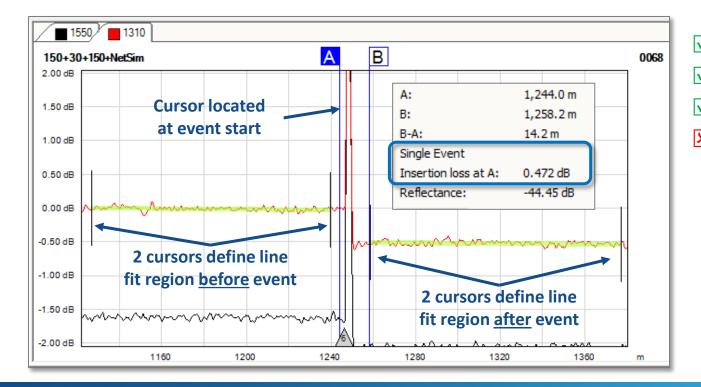
• If tail cord used, place cursor B after receive cable connection to include loss of last connector in end-to-end loss measurement


В

Measuring Splice & Connector Loss using OTDR Trace

Two-point loss measurements

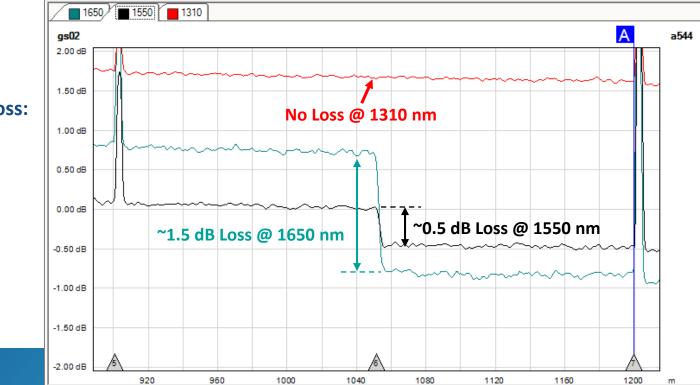
- Place the Cursor A on backscatter at event start not on rising edge of reflective events
- Place the **Cursor B** on backscatter **after the event** at earliest point where trace returns to backscatter level
- Event Location corresponds with start of the event (cursor A location)
- Event Loss is the difference between backscatter level at A and B cursor locations


- ☑ Fast, easy manual loss measurement method
- Measurement error possible due to noise or wide pulse width (includes fiber loss between cursors)

Measuring Splice & Connector Loss using OTDR Trace

LSA line fit loss measurements (5-cursor method)

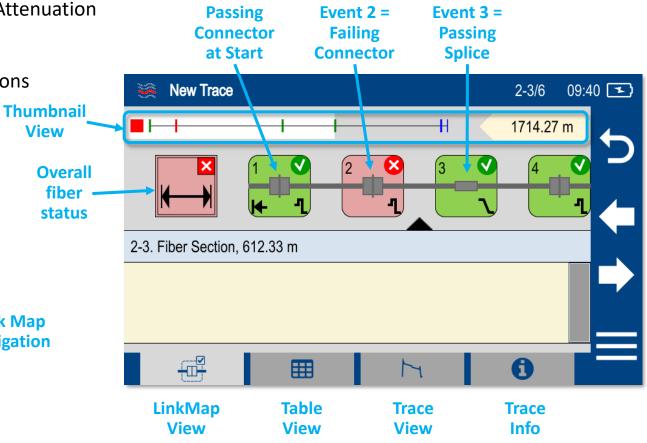
- Place first two cursors on event-free backscatter preceding the event wider spacing is better
- Place 3rd cursor at the start of the event
- Place the last two cursors on event-free backscatter following the event wider spacing is better
- Loss computed by OTDR by projecting line fits to event start and measuring difference in projected lines



- More accurate loss measurements on noisy traces
 Corrects for fiber loss in dead zone of wider pulses
 Automated measurements typically use LSA line fit
- More complex (must place 5 cursors vs. 2 cursors)

Detecting and Measuring Macro-bends using OTDR Trace

- Must test at 2 wavelengths (typically 1310 & 1550 nm) to detect macro-bends
 - Macro-bends are detected by comparing traces at short (1310 nm) and long (1550 nm) wavelengths
 - Macro-bends identified as events with event loss at least 0.2 dB higher at 1550 nm than at 1310 nm
 - Macro-bend may show up as non-reflective loss at 1550 nm with no detectable event at 1310 nm
 - Macro-bends may occur at reflective or non-reflective events (connectors, splices or mid-span


Longer λ s more sensitive to bending loss:

- Bend not detected at 1310 nm
- 0.5 dB loss at 1550 nm due to bend
- 1.5 dB loss at 1650 nm due to bend

Newer OTDRs provide Icon-based Link Map & Event Table

- Thumbnail view shows proportionally-spaced events and overall fiber length
 - White-highlighted section corresponds to portion shown in larger link map
- 1st icon indicates overall pass/fail status
 - Touch Table View tab to display end-to-end Link Loss, ORL, Attenuation
- Subsequent icons identify event type and status
 - Touch an icon to view event type, location & recommendations
 - Touch Table View tab to view event's loss & reflectance
- Left/right arrows navigate to previous/next event
 - Results table also reports fiber section loss & attenuation

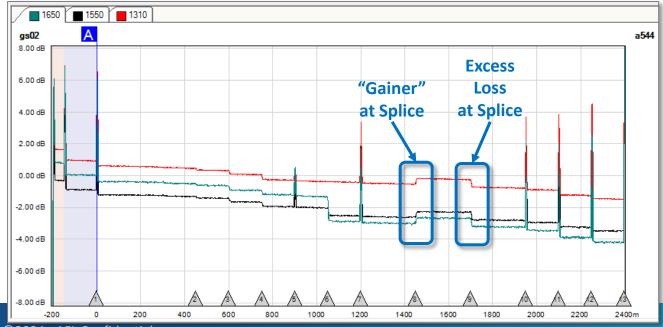
OTDR-generated Event Table

- Event detection software is continually improving, but not perfect
 - May miss events humans can detect
 - May report false events which humans can rule out
 - Missed or false events are usually low-loss events so not a concern
 - Improper manual mode settings can cause important events and faults to be missed
 - Range too short
 - Pulse width too narrow
 - Averaging time too short
 - Launch or receive cable length incorrectly configured
 - Improper Expert mode settings can cause important events to be reported at wrong location

Saving, Downloading & Reporting OTDR Results

Saving & Downloading OTDR Results

- OTDR test results should be saved in Telcordia .SOR file format
 - .SOR is only standardized format supported by all OTDR manufacturers
 - Includes OTDR test settings, event table, and trace data
 - SOR standard supports vendor-proprietary extensions
 - Can be read by Trace Viewer and Reporting software


- Saved SOR files can be transferred to PC for viewing or reporting using PC software
 - Transfer via USB memory stick, USB cable, Bluetooth, or WiFi
- PC-based OTDR software supports offline analysis and reporting:
 - View and analyze downloaded traces
 - Compare multiple traces
 - Correcting event table (add missed events, delete false events, correct misconfigured launch cables, etc.)
 - Bidirectionally average traces obtained from each end of the network
 - Generate reports for single fiber, selected fibers or all fibers tested in a cable

Bidirectional Averaging: When & Why?

Why bidirectionally average traces obtained from both ends of a fiber?

- OTDR may miss events at far end of long fibers
 - Events missed in one direction may be detected when testing in the opposite direction
 - Averaging includes all events detected in each direction
- Networks may contain a mix of fiber types with different backscatter characteristics
 - When lower backscatter fiber connected to higher backscatter fiber, event may appear as "gain"
 - When tested in the opposite direction, event will appear as excess loss may be identified as failing event
 - Averaging the event loss in both directions provides more accurate measure of true event loss

- Splicing dissimilar fibers may result in 'gainers' or excess loss
- 'Gainer' in one direction appears as excess loss in opposite direction
- Bidirectionally averaging produces more accurate splice loss measurements

Your Turn:

Part 2 April 23rd, 2024, 2pm EST

"From Glitches to Glory: OTDR Problem-Solving Strategies"

click to REGISTER NOW

FAFL Thank You

Please feel free to ask any questions